Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies human genes required for hepatitis C viral replication

20.03.2009
Targeting factors in patients, rather than the virus, could avoid development of resistance

Massachusetts General Hospital (MGH) researchers are investigating a new way to block reproduction of the hepatitis C virus (HCV) – targeting not the virus itself but the human genes the virus exploits in its life cycle. In the March 19 Cell Host & Microbe, they report finding nearly 100 genes that support the replication of HCV and show that blocking several of them can suppress viral replication in cultured cells.

"We identified a large number of genes that have not been previously known to be involved in hepatitis C replication," says Raymond Chung, MD, director of Hepatology in the MGH Gastrointestinal Unit, the study's senior author.

Lead author Andrew Tai, MD, PhD, also of the MGH Gastrointestinal Unit, adds, "We may be a few years away from developing therapies based on these findings, but this study is a proof of principle that targeting host factors is a viable therapeutic strategy."

Usually spread by blood-to-blood contact, HCV infection becomes chronic in 70 to 80 percent of patients, and long-term infection can lead to liver failure or liver cancer. Today HCV-related liver disease is the most common diagnosis underlying the need for liver transplantation. HCV infection is usually treated with a six- to eleven-month regimen combining peginterferon and the antiviral drug ribavirin, but treatment is not successful in many patients and has serious side effects some cannot tolerate. Other therapies targeting viral enzymes are being developed, but there is concern that HCV's ability to mutate rapidly would lead to the emergence of resistant strains, so strategies directed against factors in the infected host rather than the virus may offer a complementary approach.

These strategies are being explored in a number of diseases – including influenza, West Nile virus and HIV – and previous studies have scanned a limited number of human genes for host cofactors of HCV infection. For the current study the researchers examined whether blocking each of the approximately 21,000 predicted messenger RNA transcripts in the human genome with small interfering RNAs (siRNAs) had any effect on HCV replication. Chung notes that this approach does not rely on any prior assumptions about gene function and can thereby identify genes not previously suspected of involvement.

The siRNA scan found 96 genes that appear to have a role in viral replication, and the research team studied several of them in greater detail. One gene codes for an enzyme called PI4KA, which is believed to be involved in the formation of membrane structures within the cell that may be the site of HCV replication. Another group of genes contribute to formation of the COPI coat that covers several types of cellular vesicles and is known to have a role in the replication of poliovirus. The researchers also focused on the gene for hepcidin, a liver protein that regulates iron absorption, since iron levels in the blood and liver rise in chronic HCV infection. They found that blocking each of these genes also blocked HCV replication, as did drugs that inhibit PI4KA and COPI, although the tested agents might not be suitable for therapeutic use.

"Now we need to work to uncover the molecular mechanisms by which these genes support HCV replication to get a better idea of which would be advantageous therapeutic targets," explains Chung, an associate professor of Medicine at Harvard Medical School.

Additional co-authors of the Cell Host & Microbe paper are Yair Benita, PhD, Sun-Suk Kim, MD, and Ramnik Xavier, MB,ChB, MGH Gastrointestinal Unit; and Naoya Sakamoto, MD, PhD,Tokyo Medical and Dental University. The study was supported by grants from the National Institutes of Health, the Massachusetts Biomedical Research Corporation, the American Gastrointestinal Association and the American Liver Foundation.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>