Study finds long-distance migration shapes butterfly wings

As part of a National Science Foundation and UGA-funded study, researchers in the Warnell School of Forestry and Natural Resources and the Odum School of Ecology examined the size and shape of monarchs from migratory and non-migratory populations using sophisticated computer imaging that was able to measure precise details about the insects’ wings.

Warnell doctoral candidate Andy Davis and Odum Associate Professor Sonia Altizer compared migratory monarchs from the eastern and western U.S. to those in Hawaii, Costa Rica, South Florida and Puerto Rico that do not migrate. They also measured the wings of lab-grown monarchs to rule out environmental causes of differences in size and shape, and to demonstrate a genetic basis for variation in wing traits among individual monarchs. Altizer and Davis’ findings were recently published in the online edition of the scientific journal Evolution.

The findings in monarchs were consistent with previous studies comparing migratory and non-migratory bird species, which indicate that the best shape for long-distance flight involves long wings with a narrow tip to help reduce drag. In addition to their findings on wing size and shape, the team also found that monarchs from the two migratory populations in the U.S. differed in body size, suggesting that each population could have adapted to the demands of migration in subtly different ways. Larger bodies might help eastern monarchs, with their much longer migration, carry fat deposits to fuel the long journey and five-month overwintering period in Mexico.

Monarchs in eastern North America, famous for migrating the longest distances of any insect species in the world, face a number of threats, to the point that monarch migration is considered to be an “endangered phenomenon.” Davis has published previous research indicating that female monarch butterflies are on a 30-year decline in the eastern U.S., a troubling pattern that paints a dire picture for population recruitment. Furthermore, monarchs from this population are prone to periodic population crashes from storms at the Mexican overwintering site. Although monarchs worldwide are not threatened, Altizer said, those with the larger wingspan are. “Our study shows that we would lose an evolutionarily unique population if the migration of eastern monarchs were to unravel,” she said.

Writer: Sandi Martin, 706/542-2079, smartin@warnell.uga.edu
Contacts: Andrew Davis, 706/542-2686, akdavis@uga.edu; Sonia Altizer, 706/542-9251, saltizer@uga.edu

Media Contact

Sandi Martin EurekAlert!

More Information:

http://www.uga.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors