Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study finds that bacteria on marine sponges can develop capacity to move and inhibit biofilm formation

06.09.2012
A new study shows that when enough bacteria get together in one place, they can make a collective decision to grow an appendage and swim away. This type of behavior has been seen for the first time in marine sponges, and could lead to an understanding of how to break up harmful bacterial biofilms, such as plaque on teeth or those found on internal medical devices like artificial heart valves.
Bacteria have ways of communicating with each other, and scientists have now identified a new signaling system that, when there is a critical mass of bacteria present, causes the bacteria to produce an appendage known as a flagellum that moves like a corkscrew and gives them the ability to swim away, inhibiting the formation of biofilm.

"Anything we can discover about this bacterial communication could be really important in understanding how bacteria become pathogenic in humans or how they form film on teeth or internal medical devices," said study co-author Dr. Russell Hill, Director of the Institute of Marine and Environmental Technology in Baltimore, Maryland. "Understanding that process may help in the future for controlling biofilms."

It is estimated that pound by pound there are more bacteria on the Earth than all other life forms combined. They are simple organisms that consist of one cell and can only be seen through a microscope. However, bacteria have evolved ways to gather into densely populated and slimy communities called “biofilms,” which attach to hard surfaces. They also know how to talk to each other, and can make group decisions about how to behave, called 'quorum sensing.'

Marine sponges in particular harbor complex and diverse bacterial communities, in some cases as much as 30-40% of the sponge's biomass. This high density of bacteria is an ideal place to study signaling, or how bacteria talk to each other using small chemical molecules. Just like in a business meeting, once enough bacteria gather in one place—or a quorum is met—a decision about their collective behavior can be made. This 'quorum sensing' is responsible for a number of cellular processes, including triggering molecular mechanisms that can make the surface of the ocean light up at night and the gathering of bacteria that causes plaque on teeth, otherwise known as biofilm.

The bacteria that colonize and are dependent on these marine sponges use quorum sensing to activate their locomotion when their population becomes dense, naturally limiting the amount of biofilm they form.

“This precise calibration of the bacterial interactions within the sponge may have evolved to help maintain a healthy, well-distributed symbiotic population,” said study coauthor Clay Fuqua of Indiana University. "Similar mechanisms may be at play in other complex microbial communities within hosts such as those within human intestines and in symbiotic plants

This new study by scientists from the University of Maryland Center for Environmental Science's Institute of Marine and Environmental Technology, Indiana University, and University of Colorado Denver's School of Medicine, is published in the September 2012 issue of Molecular Microbiology.

Amy Pelsinsky | EurekAlert!
Further information:
http://www.umces.edu

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>