Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong Evidence – New Insight in Muscle Function

27.04.2015

SCIENTISTS GAIN UNIQUE INSIGHT INTO THE FUNCTION OF A KEY MUSCLE PROTEIN

Thanks to the first high-resolution structural analysis of the muscle protein α-actinin, scientists now have a better understanding of how muscles work.


In a muscle every protein has to pull its weight. Thanks to high-resolution structural analysis the role of the essential muscle protein α-Actinin is now better understood.

© Gautel / Ghisleni / Pinotsis / Djinovic-Carugo

The analysis provides crucial information about the structure and function of this complex muscle protein and could lead to the development of new treatments for major muscular disorders.

The results of the project, which is funded by the Austrian Science Fund FWF and the European Commission, were recently published in the prestigious scientific journal Cell.

Muscles move many things – but first and foremost themselves. Filaments of special proteins pull against each other so that the muscle can exert force. This only works if there is a fixed point, which anchors the filaments.

These locations are known as Z-disks and are largely composed of the protein α-actinin. An international research team headed by Kristina Djinovic-Carugo from the Max F. Perutz Laboratories of the University of Vienna and Medical University of Vienna has taken a closer look at this protein.

FUNCTION FOLLOWS FORM

"We not only succeeded in describing the exact structure of the protein for the first time", explains Djinovic-Carugo, "we were also able to confirm the long-held assumption about how its function is regulated."

It emerged from the structural research that showed that α-actinin exists as a dimer, a complex consisting of two identical molecules, and that it displays a cylindrical shape, 360 Å in length (1 Å = 10 to the power of -10 metres) and 60 Å wide. Each individual molecule of the dimer has a head-and a neck-like structure followed by a four-part rod-shaped extension.

Two protein domains protruding from the rod-shaped extension in an L-shaped formation proved to be particularly interesting. "These L-shaped domains connect to the neck of the other molecule and this interaction is important for function", describes Djinovic-Carugo. "However, the really exciting discovery about these domains arose when we added the fatty acid molecule PIP2."

Scientists had actually speculated for years that PIP2 plays a key role in the functioning of muscle α-actinin. This hypothesis remained unconfirmed, however, until the following observation was made during the study of Djinovic-Carugo and her international colleagues in Germany, United Kingdom, Norway, Russia, Switzerland and Slovenia: as long as there is no PIP2 available, the L-shaped domain remains connected to the neck of the second α-actinin.

If PIP2 is available, the connection opens and renders the domain available to bind to another muscle protein – titin. The trick here – as revealed by the structural data from this FWF project – is that the neck region of the α-actinin is similar in structure to titin.

If there is no PIP2, one of the L-shaped domain of an α-actinin molecule binds to a titin-lookalike region in the neck of the opposing molecule. If PIP2 is present, the L-shaped part detaches from the neck and binds titin. The presence of PIP2 is sufficient to change the binding parameters in such a way that the one is prioritised over the other.

X-RAY VIEW OF THE CRYSTAL BALL

Regarding the methodology used in the study, Djinovic-Carugo says: "To deduce the functioning of a protein from its structure, you have to be able to identify everything down to a billionth of a metre. This is only really possible using X-ray diffraction, in which X-ray beams diffract when they encounter the fine structures of a protein, which is presented in the form of a crystal."

However, the decision to use this technology involved a tough test of the scientists’ patience at the outset: it took years to produce sufficient amounts of α-actinin to grow the protein crystals. The clarification of how α-actinin is regulated by PIP2 necessitated the use of other complicated complementary analysis methods, and this is where the expertise of Djinovic-Carugo’s international colleagues was indispensable. The comprehensive findings, which were recently acknowledged through the publication of the study in Cell, show that the long and concerted effort was worthwhile.

The importance of the project’s results extends far beyond the basic insights they provide. α-Actinin plays a role in the causes of life-threatening muscular disorders like dystrophies and cardiomyopathies. The new insights into the structure and function of this protein could lead to the development of new approaches to their treatment.

Professor Kristina Djinovic-Carugo is an internationally renowned expert in the x-ray diffraction of proteins. She heads the Department of Structural and Computational Biology ( http://zmb.univie.ac.at/en/structure-of-the-zmb/department-of-structural-and-computational-biology/ ) of the Max F. Perutz Laboratories ( https://www.mfpl.ac.at ) of the University of Vienna as well as the Laura Bassi Center for Optimized Structural Studies.

For information on Djinovic-Carugo’s research group, see: http://www.mfpl.ac.at/djinovic

Original publication: E. d. A. Ribeiro, N Pinotsis, A Ghisleni, A Salmazo, P. V. Konarev, J. Kostan, B. Sjoeblom, C. Schreiner, A. A. Polyansky, E. A. Gkougkoulia, M. R. Holt, F. L. Aachmann, B. Žagrović, E. Bordignon, K. F. Pirker, D. I. Svergun, M. Gautel and K. Djinović-Carugo: The structure and regulation of human muscle α-actinin. Cell 158, 1447 – 1460, Dec. 04, 2014 DOI: http://dx.doi.org/10.1016/j.cell.2014.10.056

Link to the publication: http://www.cell.com/cell/abstract/S0092-8674(14)01428-7


Scientific Contact:
Prof. Kristina Djinovic-Carugo
Max F. Perutz Laboratories University of Vienna Department of Structural and Computational Biology Campus Vienna Biocenter 5
1030 Vienna, Austria
M +43 / 664 / 602 77 522 03
E kristina.djinovic@univie.ac.at
W https://www.mfpl.ac.at

Austrian Science Fund FWF:
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E marc.seumenicht@fwf.ac.at
W http://www.fwf.ac.at

Copy Editing & Distribution:
PR&D – Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Marc Seumenicht | PR&D – Public Relations for Research & Education

Further reports about: Biology Cell Computational Biology FWF Muscle Protein disorders function muscle protein

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>