Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Striking differences in brain morphology between wild and domestic rabbits

26.06.2018

The most characteristic feature of domestic animals is their tame behaviour. An international team of scientists has now used high-resolution magnetic resonance imaging (MRI) to study how domestication has affected brain morphology in domestic rabbits. The results show that domestication has had a profound effect on brain morphology in particular regions of the brain involved in fear processing, the amygdala and medial prefrontal cortex. The study is published in PNAS.

In contrast to domestic rabbits, wild rabbits have a very strong flight response because they are hunted by eagles, hawks, foxes and humans, and therefore must be very alert and reactive to survive in the wild. In fact, Charles Darwin wrote in On the Origin of Species that “…no animal is more difficult to tame than the young of the wild rabbit; scarcely any animal is tamer than the young of the tame rabbit”. There is no doubt that this type of differences in behaviour between wild and domestic animals to a large extent are genetically determined.


Changes in brain architecture are consistent with altered fear processing in domestic rabbit

SLU

‘In a previous study we reported that genetic differences between wild and domestic rabbits are particularly common in the vicinity of genes expressed during brain development,’ explains Miguel Carneiro, from CIBIO-InBIO, University of Porto, one of the leading authors on the paper. ‘In the present study we decided to use high-resolution MRI to explore if these genetic changes are associated with changes in brain morphology,’ says Miguel Carneiro.

The scientists raised eight domestic and eight wild rabbits under very similar conditions to minimize changes due to environmental effects. Furthermore, the brain MRI data were interpreted with sophisticated image analysis in which the scientist carrying out the analysis was unaware of the status animals (wild or domestic).

‘We observed three profound differences between the brains of wild and domestic rabbits,’ states Irene Brusini, first author and PhD student at KTH Royal Institute of Technology in Stockholm. ‘Firstly, wild rabbits have a larger brain-to-body size ratio than domestic rabbits. Secondly, domestic rabbits have a reduced amygdala and an enlarged medial prefrontal cortex. Thirdly, we noticed a generalized reduction in white matter structure in domestic rabbits.’

‘These differences in brain morphology make perfect sense in relation to the fact that domestic rabbits are less fearful and have an attenuated flight response compared with wild rabbits,’ explains Mats Fredrikson, Professor at Uppsala University and Karolinska Institutet, one of the senior authors on the paper.

Our results show that an area involved in sensing fear (the amygdala) is smaller in size while an area controlling the response to fear (the medial prefrontal cortex) is larger in domestic rabbits. The reduced amount of white matter suggests that domestic rabbits have a compromised information processing possibly explaining why they are more slow reacting and phlegmatic than their wild counterparts.’

‘No previous study on animal domestication has explored changes in brain morphology between wild and domestic animals in such depth as we have done in this study,’ says Leif Andersson, Uppsala University, Swedish University of Agricultural Sciences and Texas A&M University. ‘When we initiated the study the concern was that any changes may be too subtle to be noticeable with MRI but that was clearly not the case as we noticed distinct changes.’

‘This study is not only important for our understanding of animal domestication but also for the basic understanding how variation in brain morphology can impact a complex behaviour like fear response,’ ends Leif Andersson.

For more information contact:

Professor Leif Andersson, Uppsala University, Swedish University of Agricultural Sciences & Texas A&M University, phone: +46-18-471 4904, +46-70-514 4904, email: Leif.Andersson@imbim.uu.se

Changes in brain architecture are consistent with altered fear processing in domestic rabbits, PNAS, DOI: 10.1073/pnas.180102411

Linda Koffmar, Uppsala university | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists first to develop rapid cell division in marine sponges
21.11.2019 | Florida Atlantic University

nachricht CUHK Faculty of Engineering develops novel imaging approach
21.11.2019 | The Chinese University of Hong Kong

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>