Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Strawberry Genome Sequence Promises Better Berries

11.01.2011
An international team of researchers, including several from the University of New Hampshire, have completed the first DNA sequence of any strawberry plant, giving breeders much-needed tools to create tastier, healthier strawberries.

Tom Davis, professor of biological sciences at UNH, and postdoctoral researcher Bo Liu were significant contributors to the genome sequence of the woodland strawberry, which was published last month in the journal Nature Genetics.

“We now have a resource for everybody who’s interested in strawberry genetics. We can answer questions that before would have been impossible to address,” says Davis, who has been working on the strawberry genome project since 2006 as part of the international Strawberry Genome Sequencing Consortium.

For instance, says Davis, breeders can now look at the DNA “fingerprint” of strawberry plants to more easily breed those with enhanced flavor, aroma, or antioxidant properties. Or they could breed more disease-resistant berries, decreasing the significant amount of spraying that cultivated strawberries currently need to thrive and thus enhancing the berry’s healthful qualities.

Further, the woodland strawberry is a member of the Rosaceae family, which includes apples, peaches, cherries, raspberries, and almonds, all economically important and popular crops; researchers say the DNA sequence of the strawberry genome will inform the breeding of these other fruits. “We can now begin to understand how evolution works at the level of the genome on this family of plants we all enjoy,” says Davis.

The genome sequencing effort, led by researchers at the University of Florida and Virginia Tech, found that the woodland strawberry -- Fragaria vesca – has240 million base pairs of DNA (compared to 3 billion for humans), making it one of the smallest genomes of economically significant plants. The consortium focused first on sequencing the wild woodland strawberry because its cultivated cousins, all hybrids, are far more complex.

Building upon prior publications in which he described a one percent genomic sampling of a native New Hampshire wild strawberry, Davis played multiple roles in genome project planning, data interpretation, and manuscript preparation. Liu’s unique contribution to this effort was to independently document the locations of specific sequences called ribosomal gene clusters on the chromosomes themselves, using an advanced microscopic technique known as fluorescent in situ hybridization.

The Nature Genetics paper, “The genome of the woodland strawberry,” is available here: http://strawberrygenes.unh.edu/Published.740%5B1%5D.pdf. By fortuitous coincidence, the complete genomic sequence of another delectable plant species, Theobroma cacao (chocolate), was published in the same journal issue. More information on strawberry genome work at UNH is at strawberrygenes.unh.edu. The UNH component of this work was supported, in part, by the New Hampshire Agricultural Experiment Station and by a grant from the U.S. Department of Agriculture (National Research Initiative) Plant Genome program.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu/news/cj_nr/2011/jan/bp10genome.cfm
http://www.unh.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>