Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Strategy Likely to Speed Drug Development for Rare Cancers

19.09.2011
Researchers have identified promising new therapies for ependymoma, a rare tumor with few treatment options. St. Jude Children’s Research Hospital investigators led the effort, which used a new, faster drug development system that combines the latest drug screening technology with the first accurate animal model of the tumor.

Investigators identified several dozen new and existing drugs as possible ependymoma treatment candidates. The drugs were found by screening 5,303 existing medicines, natural products and other compounds for activity against the tumor, which develops in the brain and spine of children and adults. The work is published in the current edition of the scientific journal Cancer Cell.

The list of candidate drugs included 5-fluorouracil (5-FU). 5-FU has been widely used to treat a variety of adult cancers but has not been formally tested against ependymoma. Based on study results, St. Jude is planning a clinical trial of 5-FU in young ependymoma patients, said senior author Richard Gilbertson, M.D., Ph.D., director of the St. Jude Comprehensive Cancer Center. Gilbertson credited the method used in this study with highlighting 5-FU’s potential.

Researchers hope to use the same system to expand chemotherapy options for patients with other cancers. “This approach should significantly advance the efficiency and speed with which we discover and develop new treatments for rare cancers and cancer subtypes,” the investigators noted. Jennifer Atkinson, Ph.D., a former St. Jude postdoctoral fellow, is the first author. R. Kiplin Guy, Ph.D., chair of the St. Jude Department of Chemical Biology and Therapeutics, and Gilbertson are corresponding authors.

Rather than waiting years for clinical trial results, this system promises to take just months to provide key information about a drug’s effectiveness and optimal administration, Gilbertson said.

The results are good news for patients with ependymoma and other cancers where treatment options are limited and the outlook remains bleak. While overall childhood cancer survival rates are now almost 80 percent, ependymoma remains incurable in up to 40 percent of patients. The tumor is found in 150 to 200 U.S. children annually, making it the third most common pediatric brain tumor. Treatment has changed little in the past 40 years and is limited to surgery and radiation.

Along with identifying and prioritizing drug development candidates against ependymoma, the research provided insight into the tumor’s biology. The screening identified several messenger proteins, known as kinases, as possible new regulators of the tumor cell proliferation that makes cancer deadly. The abnormal tumor kinase activity occurred in certain pathways in tumor cells, including the insulin-signaling pathway and the centrosome cycle.

This study builds on earlier research led by Gilbertson that showed ependymoma includes nine different tumor subtypes. Each begins when particular mutations occur in stem cells from different regions of the brain or spine. Stem cells are the specialized cells that can divide and take on more specific functions.

For this project, investigators focused on a subtype D ependymoma. In earlier research, Gilbertson and his colleagues showed that extra copies of the EPHB2 gene caused this tumor subtype. The investigators used this information to develop an accurate model of subtype D ependymomas in mice. The mouse model includes the same mutation in the same neural stem cell responsible for the human disease and was crucial for speeding drug development.

Researchers used an automated system to check 5,303 existing drugs, natural products and other compounds for activity against four different types of mouse brain cells, including normal neural stem cells, subtype D ependymoma tumor cells and cells from a different brain tumor.

Of the 634 compounds that showed activity against subtype D ependymoma cells, four demonstrated a two-fold greater ability to block the growth of the tumor cells, but not normal cells. The drugs included 5-FU and two closely related compounds. The fourth was beta-escin, which belongs to a family of drugs that are generating interest as potential chemotherapy agents.

5-FU also proved more effective than four other chemotherapy drugs in slowing tumor growth and extending the lives of mice with subtype D ependymoma. 5-FU also appeared less toxic to normal mouse brain cells than another drug, bortezomib, included in the study. The findings provided preliminary evidence that the screening system might provide an early indication of drug toxicity. The information could help guide treatment and prioritize drugs for development, researchers said.

The screening also highlighted a possible role for kinase inhibitors. Those are drugs that block activity of proteins that help drive cell division and sustain tumors. More than 18 inhibitors are in clinical trials that target the kinases this study tied to proliferation of both normal and ependymoma tumor cells.

The study’s other authors are Anang Shelat, Tanya Kranenburg, Nidal Boulos, Karen Wright, Helen Poppleton, Kumarasamypet Mohankumar, Timothy Phoenix, Paul Gibson, Liqin Zhu, Yiai Tong, Chris Eden, David Ellison, Amar Gajjar and Clinton Stewart, all of St. Jude; Angel Montero Carcaboso, Alexander Arnold, Robert Johnson Clementine Feau, all formerly of St. Jude; and Waldemar Priebe, Dimpy Koul and W.K. Alfred Yung, of University of Texas MD Anderson Cancer Center.

The study was funded in part by the National Institutes of Health, the Collaborative Ependymoma Research Network and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other life-threatening diseases. The hospital’s research has helped push overall survival rates for childhood cancer from less than 20 percent when the institution opened to almost 80 percent today. It is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children, and no family ever pays St. Jude for care.

Summer Freeman | Newswise Science News
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Genome Duplication Drives Evolution of Species
25.09.2018 | Universität Zürich

nachricht Why it doesn’t get dark when you blink
25.09.2018 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Why it doesn’t get dark when you blink

25.09.2018 | Life Sciences

Genome Duplication Drives Evolution of Species

25.09.2018 | Life Sciences

Desert ants have an amazing odor memory

25.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>