Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopgap DNA Repair Needs a Second Step

06.05.2009
DNA is damaged about 20,000 times a day. Sometimes this damage causes gaps that prevent the DNA molecule from being copied when the cell divides. In a sloppy but efficient repair technique, the cell may fill in the missing DNA in an inaccurate fashion. Such repair can save the cell from dying, but it comes at a price: this error-prone mechanism is a major source of mutations. Now, a scientist at the Weizmann Institute has revealed how the stopgap repair works. It proceeds in two steps and requires two types of enzymes.

One can have a dream, two can make that dream so real, goes a popular song. Now a Weizmann Institute study has revealed that it takes two to perform an essential form of DNA repair.

Prof. Zvi Livneh of the Weizmann Institute’s Biological Chemistry Department has been studying DNA repair for some two decades: “Considering that the DNA of each cell is damaged about 20,000 times a day by radiation, pollutants, and harmful chemicals produced within the body, it’s obvious that without effective DNA repair, life as we know it could not exist.

Most types of damage result in individual mutations – genetic ‘spelling mistakes’ – that are corrected by precise, error-free repair enzymes. Sometimes, however, damage results in more than a mere spelling mistake; it can cause gaps in the DNA, which prevent the DNA molecule from being copied when the cell divides, much like an ink blot or a hole on a book page interferes with reading. So dangerous are these gaps that the cell resorts to a sloppy but efficient repair technique to avoid them: it fills in the missing DNA in an inaccurate fashion. Such repair can save the cell from dying, but it comes at a price: this error-prone mechanism, discovered at the Weizmann Institute and elsewhere about a decade ago, is a major source of mutations.”

In a recent study he conducted with graduate students Sigal Shachar and Omer Ziv, as well as researchers from the US and Germany, Livneh revealed how the error-prone repair works. The team found that such repair proceeds in two steps and requires two types of enzymes, belonging to the family of enzymes called DNA polymerases, which synthesize DNA. First, one repair enzyme, “the inserter,” does its best to fit a genetic “letter” into the gap, opposite the damaged site in the DNA molecule; several enzymes can perform this initial step, which often results in the insertion of an incorrect genetic letter. Next, another enzyme, “the extender,” helps to restore regular copying of DNA by attaching additional DNA letters after the damaged site; only one repair enzyme is capable of performing this vital second step. These findings were published recently in The EMBO Journal.

Understanding how this major form of DNA repair works can have significant clinical implications. Since defects in this process increase the risk of cancer, clarifying its nuts and bolts might one day make it possible to enhance it in people whose natural DNA repair is deficient. In addition, manipulating this mechanism can improve the effectiveness of cancer drugs. Cancer cells can resist chemotherapy by exploiting their natural repair mechanisms, and blocking these mechanisms may help overcome this resistance, leading to a targeted destruction of the cancerous tumor.

Prof. Zvi Livneh’s research is supported by the Helen and Martin Kimmel Institute for Stem Cell Research; the estate of Lore F. Leder; and Esther Smidof, Geneva, Switzerland. Prof. Livneh is the incumbent of the Maxwell Ellis Professorial Chair in Biomedical Research.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org
http://www.weizmann-usa.org/site/PageServer?pagename=homepage

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>