Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopgap DNA Repair Needs a Second Step

06.05.2009
DNA is damaged about 20,000 times a day. Sometimes this damage causes gaps that prevent the DNA molecule from being copied when the cell divides. In a sloppy but efficient repair technique, the cell may fill in the missing DNA in an inaccurate fashion. Such repair can save the cell from dying, but it comes at a price: this error-prone mechanism is a major source of mutations. Now, a scientist at the Weizmann Institute has revealed how the stopgap repair works. It proceeds in two steps and requires two types of enzymes.

One can have a dream, two can make that dream so real, goes a popular song. Now a Weizmann Institute study has revealed that it takes two to perform an essential form of DNA repair.

Prof. Zvi Livneh of the Weizmann Institute’s Biological Chemistry Department has been studying DNA repair for some two decades: “Considering that the DNA of each cell is damaged about 20,000 times a day by radiation, pollutants, and harmful chemicals produced within the body, it’s obvious that without effective DNA repair, life as we know it could not exist.

Most types of damage result in individual mutations – genetic ‘spelling mistakes’ – that are corrected by precise, error-free repair enzymes. Sometimes, however, damage results in more than a mere spelling mistake; it can cause gaps in the DNA, which prevent the DNA molecule from being copied when the cell divides, much like an ink blot or a hole on a book page interferes with reading. So dangerous are these gaps that the cell resorts to a sloppy but efficient repair technique to avoid them: it fills in the missing DNA in an inaccurate fashion. Such repair can save the cell from dying, but it comes at a price: this error-prone mechanism, discovered at the Weizmann Institute and elsewhere about a decade ago, is a major source of mutations.”

In a recent study he conducted with graduate students Sigal Shachar and Omer Ziv, as well as researchers from the US and Germany, Livneh revealed how the error-prone repair works. The team found that such repair proceeds in two steps and requires two types of enzymes, belonging to the family of enzymes called DNA polymerases, which synthesize DNA. First, one repair enzyme, “the inserter,” does its best to fit a genetic “letter” into the gap, opposite the damaged site in the DNA molecule; several enzymes can perform this initial step, which often results in the insertion of an incorrect genetic letter. Next, another enzyme, “the extender,” helps to restore regular copying of DNA by attaching additional DNA letters after the damaged site; only one repair enzyme is capable of performing this vital second step. These findings were published recently in The EMBO Journal.

Understanding how this major form of DNA repair works can have significant clinical implications. Since defects in this process increase the risk of cancer, clarifying its nuts and bolts might one day make it possible to enhance it in people whose natural DNA repair is deficient. In addition, manipulating this mechanism can improve the effectiveness of cancer drugs. Cancer cells can resist chemotherapy by exploiting their natural repair mechanisms, and blocking these mechanisms may help overcome this resistance, leading to a targeted destruction of the cancerous tumor.

Prof. Zvi Livneh’s research is supported by the Helen and Martin Kimmel Institute for Stem Cell Research; the estate of Lore F. Leder; and Esther Smidof, Geneva, Switzerland. Prof. Livneh is the incumbent of the Maxwell Ellis Professorial Chair in Biomedical Research.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org
http://www.weizmann-usa.org/site/PageServer?pagename=homepage

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

Collagen nanofibrils in mammalian tissues get stronger with exercise

14.12.2018 | Health and Medicine

Protein involved in nematode stress response identified

14.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>