Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steroids control gas exchange in plants

06.02.2012
Plants leaves are sealed with a gas-tight wax layer to prevent water loss.

Plants breathe through microscopic pores called stomata (Greek for mouths) on the surfaces of leaves. Over 40% of the carbon dioxide, CO2, in the atmosphere passes through stomata each year, as well a water volume twice that of the whole atmosphere. As the key conduits for CO2 uptake and water evaporation, stomata are critical for both our climate and plant productivity. Thus, not surprisingly, the total number and distribution of stomata are strictly regulated by plants to optimize photosynthesis while minimizing water loss.

The mechanisms for such regulation have remained elusive. New research from Carnegie's Zhiyong Wang, Tae-Wuk Kim and Dominique Bergmann demonstrates that certain plant steroid hormones, called brassinosteroids, play a crucial role in this regulating the number of stomata in the leaf. Their work is published online February 5 by Nature.

Brassinosteroids are found throughout the plant kingdom and regulate many aspects of growth and development, including inhibition of photosynthetic genes when there is insufficient light for photosynthesis. Mutant plants that are deficient in brassinosteroids show defects at many phases of the plant life cycle including reduced seed germination, activation of light-induced genes and growth behavior in the dark, dwarfism, and sterility.

Wang, lead author Kim and their colleagues Marta Michniewicz and Bergmann set out to determine brassinosteroid's role in stomatal development. They found that mutant plants that are brassinosteroid deficient, or lack sensitivity to brassinosteroids, were observed to have excessive and unevenly-distributed stomata, leading the team to ask what role this class of hormones plays in the developmental process for these crucial plant organs.

Wang and his colleagues had previously determined that when brassinosteroid binds to a receptor on the surface of a plant cell, it initiates a chain of signal transduction that results in certain genes being turned on or off within the cell's nucleus. But this research showed that one of the proteins involved in this chain, called BIN2, is also involved in a completely separate pathway that regulates the development of stomata.

The team found that BIN2--which is similar to a protein found in humans--had an inhibiting effect on a key protein in the stomatal-development regulatory system. This second protein is called called YODA and it also has a similar counterpart in humans. In the absence of brassinosteroid, BIN2 inhibits YODA, which allows stomata formation. When brassinosteroid is present, it causes inactivation of BIN2, and this allows YODA to inhibit stomatal development.

"This research supports the role of brassinosteroid as a master regulator that coordinates both physiological and development aspects of plant growth," Wang said. "Because brassinosteroid is one of the best-understood chemical pathways in plant physiology, these results could help scientists who are researching many other plant cell systems as well."

This research was supported by the National Institutes of Health, the Department of Energy, and the Herman Frasch Foundation. Dominique Bergmann is an investigator of the Howard Hughes Medical Institute and an adjunct member of the Carnegie Institution for Science's Department of Plant Biology.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Zhiyong Wang | EurekAlert!
Further information:
http://carnegiescience.edu

More articles from Life Sciences:

nachricht New study finds distinct microbes living next to corals
22.05.2019 | Woods Hole Oceanographic Institution

nachricht Summit charts a course to uncover the origins of genetic diseases
22.05.2019 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>