Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One Step Closer to a Drug Treatment for Cystic Fibrosis

13.10.2010
Study recognized for significance and importance in the world’s most common genetic disease

A University of Missouri researcher believes his latest work moves scientists closer to a cure for cystic fibrosis, one of the world’s most common fatal genetic diseases.

The Journal of Biological Chemistry has published findings by Tzyh-Chang Hwang, a professor in the School of Medicine’s Department of Medical Pharmacology and Physiology and the Dalton Cardiovascular Research Center. The publication has been recognized as the “paper of the week” for the journal, meaning Hwang’s work is considered to be in the top 1 percent of papers reviewed annually in terms of significance and overall importance.

Hwang’s work focuses on the two most common genetic mutations among approximately 1,500 mutations found in patients with cystic fibrosis. These two mutations cause specific chloride channels in the cell, known as the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride channels, to malfunction. This ultimately leads to repeated pneumonia, the primary cause of most deaths associated with cystic fibrosis.

“The normal function of a cell is to pass chloride ions across the cell membrane at a very fast speed,” Hwang said. “We know some signaling molecules elicit this reaction, much like a hand signals an automatic water faucet to dispense water. But in the case of cystic fibrosis, that signal is no longer detected by the mutated channel protein. Through some mechanisms we still don’t quite understand, malfunction of this channel protein eventually leads to bacterial infection in the lung, which is believed to be responsible for the most severe symptoms of cystic fibrosis.”

The most recent study found that manipulating the sensor of the channel protein can significantly rectify the malfunction of the mutated channel, thus opening the door to a drug design that may eventually be a “real cure,” Hwang said.

“We could help a lot of patients if we can utilize the power of computer simulations and structure-based drug design to discover new therapeutical reagents for cystic fibrosis, but it’s very expensive to do this kind of research in an academic institute,” Hwang said.

The publication is titled, “Optimization of the degenerated interfacial ATP binding site improves the function of diseases related mutant cystic fibrosis transmembrane conductance regulator channels.”

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>