Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How stem cells make skin

14.09.2009
EMBL scientists come a step closer to understanding skin, breast and other cancers

Stem cells have a unique ability: when they divide, they can either give rise to more stem cells, or to a variety of specialised cell types.

In both mice and humans, a layer of cells at the base of the skin contains stem cells that can develop into the specialised cells in the layers above. Scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, in collaboration with colleagues at the Centro de Investigaciones Energ¨¦ticas, Medioambientales y Tecnologicas (CIEMAT) in Madrid, have discovered two proteins that control when and how these stem cells switch to being skin cells. The findings, published online today in Nature Cell Biology, shed light on the basic mechanisms involved not only in formation of skin, but also on skin cancer and other epithelial cancers.

At some point in their lives, the stem cells at the base of the skin stop proliferating and start differentiating into the cells that form the skin itself. To do so, they must turn off the ¡®stem cell programme¡¯ in their genes and turn on the ¡®skin cell programme¡¯. Researchers suspected that a family of proteins called C/EBPs might be involved in this process, as they were known to regulate it in other types of stem cell, but had so far failed to identify which C/EBP protein controlled the switch in skin. Claus Nerlov and his group at EMBL Monterotondo discovered it was not one protein, but two: C/EBP¦Á and C/EBP¦Â.

The EMBL researchers used genetic engineering techniques to delete the genes that encode C/EBP¦Á and ¦Â specifically in the skin of mouse embryos, and found that without these proteins the skin of the mice did not form properly.

¡°Mice with neither C/EBP¦Á nor ¦Â had taut and shiny skin that couldn¡¯t keep the water inside their bodies¡±, Nerlov explains, ¡°they lacked many of the proteins that make skin mechanically strong and water tight, and they died of de-hydration shortly after birth¡±.

However, a single working copy of either the gene for C/EBP¦Á or the gene for C/EBP¦Â was enough to ensure that skin developed properly. This means that the two proteins normally do the same job in the skin¡¯s stem cells - an unexpected redundancy, which may have arisen because there are so many stem cells in skin that a tight control on proliferation is needed to avoid problems like cancer. Or it may simply be a by-product of the fact that these two proteins have different functions in other situations, such as wound healing or repair of sunlight-induced skin damage.

One of the hallmarks of epithelial cancers - which include skin, breast, and oral cancers - is that they have genes turned on which would normally only be expressed in embryonic stem cells, and which may help cancer cells divide indefinitely. Such genes become re-expressed in the skin in the absence of C/EBPs. So, by understanding how C/EBP¦Á and ¦Â turn off such ¡®stem cell¡¯ programmes, researchers hope to come a step closer to finding ways to fight such cancers.

When Nerlov and colleagues looked at how C/EBP¦Á and -¦Â work in the skin, they found that these proteins also regulate a number of other molecules that control skin development. Several important pathways known to control skin and hair formation were improperly activated in the mice lacking C/EBP¦Á and -¦Â.

¡°This is a very important discovery¡±, says Nerlov. ¡°It opens up a lot of new areas, because we can see how these proteins control virtually every other molecule known to regulate skin cell differentiation. It seems to be a key piece in the puzzle of how our skin is formed and maintained throughout life.¡±

Policy regarding use
Press and Picture Releases
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
Tel: +49 6221 387452
Fax: +49 6221 387525
anna.wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org
http://www.embl.de/aboutus/communication_outreach/media_relations/2009/090913_Monterotondo/index.html

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>