Stem cells crucial to diabetes cure in mice

“Now we know how it works,” said Chan, director of the federally designed Diabetes and Endocrinology Research Center at BCM and chief of the division of endocrinology in BCM's department of medicine. “The answer is adult stem cells.”

A gene called neurogenin3 proved critical to inducing cells in the liver to produce insulin on a continuing basis, said Chan and Dr. Vijay Yechoor, assistant professor of medicine-endocrinology and first author of the report that appears in the current issue of the journal Developmental Cell. The research team used a disarmed virus called a vector to deliver the gene to the livers of diabetic mice by a procedure commonly known as gene therapy.

“The mice responded within a week,” said Yechoor. The levels of sugar in their blood plummeted to normal and stayed that way for the rest of their normal lives.

The quick response generated more questions as did the length of time that the animals stayed healthy.

They found that there was a two-step response. At first, the neurogenin3 gene goes into the mature liver cells and causes them to make small quantities of insulin – enough to drop sugar levels to normal, said Yechoor.

“This is a transient effect,” he said. “Liver cells lose the capacity to make insulin after about six weeks.”

However, they found that other cells that made larger quantities of insulin showed up later, clustered around the portal veins (blood vessels that carry blood from the intestines and abdominal organs to the liver).

“They look similar to normal pancreatic islet cells (that make insulin normally),” said Yechoor.

They found that these “islet” cells came from a small population of adult stem cells usually found near the portal vein. Only a few are needed usually because they serve as a safety net in case of liver injury. When that occurs, they quickly activate to form mature liver cells or bile duct cells.

However, neurogenin3 changes their fates, directing them down a path to becoming insulin-producing islet cells located in the liver. The mature liver cell cannot make this change because its fate appears to be fixed before exposure to neurogenin3.

The islet cells in the liver look similar to those made by pancreas after an injury, said Yechoor.

“If we didn't use neurogenin3, none of this would happen,” he said. “Neurogenin3 is necessary and sufficient to produce these changes.”

Chan cautioned that much more work is needed before similar results could be seen in humans. The gene therapy they undertook in the animals used a disarmed viral vector that could still have substantial toxic effects in humans.

“The concept is important because we can induce normal adult stem cells to acquire a new cell fate. It might even be applicable to regenerating other organs or tissues using a different gene from other types of adult stem cells,” he said.

Finding a way to use the treatment in human sounds easier than it is, he said. The environment in which cells grow appears to be an important part of the cell fate determination.

However, he and Yechoor plan to continue their work with the eventual goal of providing a workable treatment for people with diabetes.

Media Contact

Dipali Pathak EurekAlert!

More Information:

http://www.bcm.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors