Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy makes cloudy corneas clear

14.04.2009
Stem cells collected from human corneas restore transparency and don't trigger a rejection response when injected into eyes that are scarred and hazy, according to experiments conducted in mice by researchers at the University of Pittsburgh School of Medicine. Their study will be published in the journal Stem Cells and appears online today.

The findings suggest that cell-based therapies might be an effective way to treat human corneal blindness and vision impairment due to the scarring that occurs after infection, trauma and other common eye problems, said senior investigator James L. Funderburgh, Ph.D., associate professor, Department of Ophthalmology. The Pitt corneal stem cells were able to remodel scar-like tissue back to normal.

"Our experiments indicate that after stem cell treatment, mouse eyes that initially had corneal defects looked no different than mouse eyes that had never been damaged," Dr. Funderburgh said.

The ability to grow millions of the cells in the lab could make it possible to create an off-the-shelf product, which would be especially useful in countries that have limited medical and surgical resources but a great burden of eye disease due to infections and trauma.

"Corneal scars are permanent, so the best available solution is corneal transplant," Dr. Funderburgh said. "Transplants have a high success rate, but they don't last forever. The current popularity of LASIK corrective eye surgery is expected to substantially reduce the availability of donor tissue because the procedure alters the cornea in a way that makes it unsuitable for transplantation."

A few years ago, Dr. Funderburgh and other University of Pittsburgh researchers identified stem cells in a layer of the cornea called the stroma, and they recently showed that even after many rounds of expansion in the lab, these cells continued to produce the biochemical components, or matrix, of the cornea. One such protein is called lumican, which plays a critical role in giving the cornea the correct structure to make it transparent.

Mice that lack the ability to produce lumican develop opaque areas of their corneas comparable to the scar tissue that human eyes form in response to trauma and inflammation, Dr. Funderburgh said. But three months after the lumican-deficient mouse eyes were injected with human adult corneal stem cells, transparency was restored.

The cornea and its stromal stem cells themselves appear to be "immune privileged," meaning they don't trigger a significant immune response even when transplanted across species, as in the Pitt experiments.

"Several kinds of experiments indicated that the human cells were alive and making lumican, and that the tissue had rebuilt properly," Dr. Funderburgh noted.

In the next steps, the researchers intend to use the stem cells to treat lab animals that have corneal scars to see if they, too, can be repaired with stem cells. Under the auspices of UPMC Eye Center's recently established Center for Vision Restoration, they plan also to develop the necessary protocols to enable clinical testing of the cells.

Other authors of the paper include Yiqin Du, M.D., Ph.D., and Martha L. Funderburgh, M.S.P.H., both of the University of Pittsburgh; Eric C. Carlson, Ph.D., and Eric Pearlman, Ph.D., both of Case Western Reserve University; David E. Birk, Ph.D., of the University of South Florida; Naxin Guo, M.D., Ph.D., of the University of Rochester; and Winston W-Y Kao, Ph.D., of the University of Cincinnati.

The research was supported by grants from the National Institutes of Health, the Eye and Ear Foundation (Pittsburgh), and an unrestricted grant from Research to Prevent Blindness, N.Y. Dr. Funderburgh holds the Jules and Doris Stein Professorship from Research to Prevent Blindness.

The University of Pittsburgh School of Medicine is one of the nation's leading medical schools, renowned for its curriculum that emphasizes both the science and humanity of medicine and its remarkable growth in National Institutes of Health (NIH) grant support, which has more than doubled since 1998. For fiscal year 2007, the University ranked sixth out of more than 3,000 entities receiving NIH support with respect to the research grants awarded to its faculty. As one of the university's six Schools of the Health Sciences, the School of Medicine is the academic partner to the University of Pittsburgh Medical Center (UPMC). Their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>