Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy for age-related macular degeneration -- a step closer to reality

24.03.2011
The notion of transplanting adult stem cells to treat or even cure age-related macular degeneration has taken a significant step toward becoming a reality. In a study published today in Stem Cells, Georgetown University Medical Center researchers have demonstrated, for the first time, the ability to create retinal cells derived from human-induced pluripotent stem cells that mimic the eye cells that die and cause loss of sight.

Age-related macular degeneration (AMD) is a leading cause of visual impairment and blindness in older Americans and worldwide. AMD gradually destroys sharp, central vision needed for seeing objects clearly and for common daily tasks such as reading and driving. AMD progresses with death of retinal pigment epithelium (RPE), a dark color layer of cells which nourishes the visual cells in the retina.

While some treatments can help slow its progression, there is no cure. The discovery of human induced pluripotent stem (hiPS) cells has opened a new avenue for the treatment of degenerative diseases, like AMD, by using a patient's own stem cells to generate tissues and cells for transplantation.

For transplantation to be viable in age-related macular degeneration, researchers have to first figure out how to program the naïve hiPS cells to function and possess the characteristics of the native retinal pigment epithelium, RPE, the cells that die off and lead to AMD.

The research conducted by the Georgetown scientists shows that this critical step in regenerative medicine for AMD has greatly progressed.

"This is the first time that hiPS-RPE cells have been produced with the characteristics and functioning of the RPE cells in the eye. That makes these cells promising candidates for retinal regeneration therapies in age-related macular degeneration," says the study's lead author Nady Golestaneh, Ph.D., assistant professor in GUMC's Department of Biochemistry and Molecular & Cellular Biology.

Using an established laboratory stem cell line, Golestaneh and her colleagues show that RPE generated from hiPS cells under defined conditions exhibit ion transport, membrane potential, polarized VEGF secretion and gene expression profile similar to those of a normal eye's RPE.

"This isn't ready for prime time though. We also identified some issues that need to be worked out before these cells are ready for transplantation but overall, this is a tremendous step forward in regenerative medicine," Golestaneh adds.

She explains that the hiPS-derived RPE cells show rapid telomere shortening, DNA chromosomal damage and increased p21 expression that cause cell growth arrest. This might be due to the random integration of viruses in the genome of skin fibroblasts during the reprogramming of iPS cells. Therefore, generation of viral-free iPS cells and their differentiation into RPE will be a necessary step towards implementation of these cells in clinical application, Golestaneh says.

"The next step in this research is to focus on a generation of 'safe' as well as viable hiPS-derived somatic cells," Golestaneh concludes.

Other authors on the paper include first author Maria Kokkinaki, Ph.D., Department of Biochemistry and Molecular &Cellular Biology, and Niaz Sahibzada, Ph.D., Department of Pharmacology at GUMC.

This work was funded by the National Institutes of Health. The authors report no personal financial interests related to this study.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Georgetown Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO). In fiscal year 2009-2010, GUMC accounted for 79 percent of Georgetown University's extramural research funding.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>