Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell switch on the move

01.06.2015

Biologists from the University of Freiburg demonstrate how signals in plant roots determine the activity of stem cells

The roots of a plant are constantly growing, so that they can provide the plant with water and minerals while also giving it a firm anchor in the ground. Responsible for these functions are pluripotent stem cells.


Where the concentration of WOX5 is high enough, the stem cell niche is able to maintain pluripotent stem cells. Where the concentration of WOX5 is too low, the concentration of CDF4 rises and the cells differentiate into root tissue.

Credit: Photograph by Working Group Laux

In order to avoid differentiation and to remain pluripotent, these stem cells are dependent on signals from their neighbouring cells. These signals are generated by only a small group of slowly dividing cells in the so-called quiescent centre inside the root.

An international consortium under the leadership of Prof. Dr. Thomas Laux, a biologist from the University of Freiburg, has identified the transcription factor WUSCHEL HOMEOBOX (WOX) 5 as the signal molecule, showing that it moves through pores from the cells inside the quiescent centre into the stem cells. The team of researchers has published their findings in the professional journal Developmental Cell.

'Solving the mechanism by which signals within the root control stem cell activity has implications for the general workings of the stem cell regulation in plants and humans,' Laux said. He also explained that this will allow scientists to study how plant growth adjusts to different environmental conditions, adding that, 'this is a fascinating field of research in the era of climate change.'

Of all the cells in plants and animals, pluripotent stem cells are the most multi-functional. When they divide, they produce two types of daughter cells: some become new stem cells, while others differentiate to replace tissue or form new organs. To maintain its stem cells, the organism generates the signals that block differentiation inside special stem cell niches. These niches are the only place where stem cells can exist. For blood stem cells, for example, the stem cells reside in the bone marrow.

Laux's group of researchers had previously discovered the transcription factor WOX5, which is necessary for generating signals, in the cells of the root's quiescent centre. However, what its precise role is has remained unclear until now. Laux's team studied the stem cells in the model organism of the Arabidopsis plant, or rock cress, which is part of the Brassicaceae family of plants, including mustard and cabbage.

Studies have already shown, however, that many of these findings also apply to crops such as rice. When the signal WOX5 enters the stem cells through pores, it binds at specific DNA sequences, the promoters, of target genes and recruits an enzyme via a so-called adaptor protein. This enzyme changes the DNA's protein shell, the chromatin, causing the respective gene to be no longer effectively readable.

But why does WOX5 switch off its target gene CDF4 in stem cells? Laux's team of researchers has shown that the CDF4's function is to initiate the differentiation of the stem cell's daughter cells. If the concentration of the CDF4 protein would be too high in the stem cells, then the stem cells would also be forced to differentiate and the plant would have to stop root growth.

Where the concentration of WOX5 is high enough, the stem cell niche is able to maintain the pluripotent stem cells. Where the concentration of WOX5 is low, the concentration of CDF4 rises and the cells differentiate into root tissue. This balance is the secret to the life-long activity of a stem cell niche.

###

Laux is the head of a laboratory at the Institute of Biology III and a member of the cluster of excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg.

Contact:
Dr. Thomas Laux
laux@biologie.uni-freiburg.de
49-761-203-2943
University of Freiburg

Katrin Albaum | EurekAlert!

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>