Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell study in mice offers hope for treating heart attack patients

16.02.2012
UCSF study identifies possible way to minimize heart damage

A UCSF stem cell study conducted in mice suggests a novel strategy for treating damaged cardiac tissue in patients following a heart attack.


Cardiac stem cells, pictured here, give hope to patients who have suffered a heart attack. Credit: UCSF

The approach potentially could improve cardiac function, minimize scar size, lead to the development of new blood vessels – and avoid the risk of tissue rejection.

In the investigation, reported online in the journal PLoS ONE, (http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0030329) the researchers isolated and characterized a novel type of cardiac stem cell from the heart tissue of middle-aged mice following a heart attack.

Then, in one experiment, they placed the cells in the culture dish and showed they had the ability to differentiate into cardiomyocytes, or "beating heart cells," as well as endothelial cells and smooth muscle cells, all of which make up the heart.

In another, they made copies, or "clones," of the cells and engrafted them in the tissue of other mice of the same genetic background who also had experienced heart attacks. The cells induced angiogenesis, or blood vessel growth, or differentiated, or specialized, into endothelial and smooth muscle cells, improving cardiac function.

"These findings are very exciting," said first author Jianqin Ye, PhD, MD, senior scientist at UCSF's Translational Cardiac Stem Cell Program. First, "we showed that we can isolate these cells from the heart of middle-aged animals, even after a heart attack." Second, he said, "we determined that we can return these cells to the animals to induce repair."

Importantly, the stem cells were identified and isolated in all four chambers of the heart, potentially making it possible to isolate them from patients' hearts by doing right ventricular biopsies, said Ye. This procedure is "the safest way of obtaining cells from the heart of live patients, and is relatively easy to perform," he said.

"The finding extends the current knowledge in the field of native cardiac progenitor cell therapy," said senior author Yerem Yeghiazarians, MD, director of UCSF's Translational Cardiac Stem Cell Program and an associate professor at the UCSF Division of Cardiology. "Most of the previous research has focused on a different subset of cardiac progenitor cells. These novel cardiac precursor cells appear to have great therapeutic potential."

The hope, he said, is that patients who have severe heart failure after a heart attack or have cardiomyopathy would be able to be treated with their own cardiac stem cells to improve the overall health and function of the heart. Because the cells would have come from the patients, themselves, there would be no concern of cell rejection after therapy.

The cells, known as Sca-1+ stem enriched in Islet (Isl-1) expressing cardiac precursors, play a major role in cardiac development. Until now, most of the research has focused on a different subset of cardiac progenitor, or early stage, cells known as, c-kit cells.

The Sca-1+ cells, like the c-kit cells, are located within a larger clump of cells called cardiospheres.

The UCSF researchers used special culture techniques and isolated Sca-1+ cells enriched in the Isl-1expressing cells, which are believed to be instrumental in the heart's development. Since Isl-1 is expressed in the cell nucleus, it has been difficult to isolate them but the new technique enriches for this cell population.

The findings suggest a potential treatment strategy, said Yeghiazarians. "Heart disease, including heart attack and heart failure, is the number one killer in advanced countries. It would be a huge advance if we could decrease repeat hospitalizations, improve the quality of life and increase survival." More studies are being planned to address these issues in the future.

An estimated 785,000 Americans will have a new heart attack this year, and 470,000 who will have a recurrent attack. Heart disease remains the number one killer in the United States, accounting for one out of every three deaths, according to the American Heart Association.

Medical costs of cardiovascular disease are projected to triple from $272.5 billion to $818.1 billion between now and 2030, according to a report published in the journal Circulation.

First author Ye, Henry Shih, Richard E. Sievers, Yan Zhang, and Megha Prasad are with the UCSF Division of Cardiology; Yeghiazarians and Andrew Boyle are with the UCSF Division of Cardiology and the UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; William Grossman is with the UCSF Division of Cardiology and the UCSF Cardiovascular Research Institute; Harold S. Bernstein is with the UCSF Cardiovascular Research Institute, the UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and the UCSF Department of Pediatrics; Hua Su is with UCSF Department of Anesthesia and Perioperative Care; and Yan Zhou with the UCSF Department of Cell and Tissue Biology.

The study was supported by funds from the Wayne and Gladys Valley Foundation, the UCSF Cardiac Stem Cell Fund and the Harold Castle Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Video:

Stem Cell Study in Mice Offers Hope for Treating Heart Attack Patients http://youtu.be/qDmaegjh030

Follow UCSF

http://www.UCSF.edu | http://www.Facebook.com/ucsf | http://www.Twitter.com/ucsf | http://www.YouTube.com/ucsf

Leland Kim | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht "Make two out of one" - Division of Artificial Cells
19.02.2020 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
19.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>