Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell finding could advance immunotherapy for lung cancer

14.11.2012
A University of Cincinnati (UC) Cancer Institute lung cancer research team reports that lung cancer stem cells can be isolated—and then grown—in a preclinical model, offering a new avenue for investigating immunotherapy treatment options that specifically target stem cells.

John C. Morris, MD, and his colleagues report their findings in the Nov. 13, 2012, issue of PLOS One, a peer-reviewed online publication that features original research from all disciplines within science and medicine.

Stem cells are unique cells that can divide and differentiate into specialized cells types—for example cardiac muscle or liver tissue. These cells also have the ability to self-renew and produce more stem cells.

"Increasing evidence supports the idea that cancerous tumors have a population of stem cells, also called cancer-initiating cells, that continually regenerate and fuel cancer growth," explains Morris, senior author of the study and professor at the UC College of Medicine. "These cancer stem cells may also have the highest potential to spread to other organs."

Current models used to study cancer stem cells provide limited information on the interaction between cancer stem cells with the immune system, making the study of new therapies that utilize the body's immune system to fight off cancer virtually impossible.

In this study, the UC team set out to find a viable, consistent way to isolate lung cancer stem cells that could be used in a mouse model with full immune system function. The team was able to achieve this using a functional laboratory test known as "tumorsphere" assay.

The test—which shows how cells grow in culture—allowed them to enrich for cancer stem cells.

"Studying these unique cells could greatly improve our understanding of lung cancer's origins and lead to the novel therapeutics targeting these cells and help to more effectively eradicate this disease," adds Morris. "Immunotherapy is the future of cancer treatment. We are hopeful that this new method will accelerate our investigation of immunotherapies to specifically target cancer stem cells."

The team is working to characterize how cancer stem cells escape the body's immune system in order to develop more effective therapies that target stem cells.

"One of the hypotheses behind why cancer therapies fail is that the drug only kills cells deemed to be 'bad' (because of certain molecular characteristics), but leaves behind stem cells to repopulate the tumor," adds Morris. "Stem cells are not frequently dividing, so they are much less sensitive to existing chemotherapies used to eliminate cells deemed abnormal."

UC study collaborators in this UC-funded study include hematology oncology postdoctoral fellow Brian Morrison, PhD, and Jason Steel, PhD, a lung cancer researcher and assistant professor of research at the UC College of Medicine.

The University of Cincinnati Cancer Institute is one of four UC and UC Health collaborative centers of excellence for research, patient care and education. The UC Cancer Institute and Cincinnati Children's Hospital Medical Center Cancer and Blood Diseases Institute together form the Cincinnati Cancer Center, a joint cancer initiative aimed at advancing cancer care faster through innovative research.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>