Stem cell breakthrough: Bone marrow cells are the answer

Using cells from mice, scientists from Iowa and Iran have discovered a new strategy for making embryonic stem cell transplants less likely to be rejected by a recipient's immune system. This strategy, described in a new research report appearing in the February 2010 print issue of The FASEB Journal (http://www.fasebj.org), involves fusing bone marrow cells to embryonic stem cells. Once fused, the hybrid cells have DNA from both the donor and recipient, raising hopes that immune rejection of embryonic stem cell therapies can be avoided without drugs.

“Our study shows that transplanted bone marrow cells fuse not only with bone marrow cells of the recipient, but with non-hematopoietic cells, suggesting that if we can understand the process of cell fusion better, we may be able to target certain organ injuries with the patient's own bone marrow cells and repair the tissues,” said Nicholas Zavazava, M.D., Ph.D., a University of Iowa researcher involved in the work.

Although the study holds great promise for future embryonic stem cell therapies, the results may be even more far reaching. Zavazava and colleagues used two different mouse strains, one as the donor and the other as the recipient. When bone marrow cells were engrafted into the recipient, they tested for the presence of both donor and recipient cells and found three different types of cells: donor cells, recipient cells, and fused cells that had DNA from the donor and recipient. They then discovered that these cells could fuse with many different types of cells in addition to embryonic stem cells, including those from the liver, kidney, heart, and gut. Although more work is necessary to determine the exact clinical outcomes, the discovery raises the possibility that bone marrow cells could be fused to transplant organs to reduce the likelihood of rejection. They could also be fused to failing organs to support regeneration.

“Unlike machines where the same part can be used for several different makes and models, each of us is custom built, and our immune system does the quality control,” said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. “As a result, human replacement parts, or organs, need to closely match the tissue of the recipient. This research uses bone marrow cells to fuse with a patient tissues so that nothing transplanted is rejected by our immune systems, and brings universal graft survival closer to reality.”

Media Contact

Cody Mooneyhan EurekAlert!

More Information:

http://www.faseb.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors