Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From stem cell to brain cell – new technique mimics the brain

24.05.2012
A new technique that converts stem cells into brain cells has been developed by researchers at Lund University. The method is simpler, quicker and safer than previous research has shown and opens the doors to a shorter route to clinical cell transplants.

By adding two different molecules, the researchers have discovered a surprisingly simple way of starting the stem cells’ journey to become finished brain cells. The process mimics the brain’s natural development by releasing signals that are part of the normal development process. Experiments in animal models have shown that the cells quickly adapt in the brain and behave like normal brain cells.

“This technique allows us to fine-tune our steering of stem cells to different types of brain cells. Previous studies have not always used the signals that are activated during the brain’s normal development. This has caused the transplanted cells to develop tumours or function poorly in the brain”, says Agnete Kirkeby, one of the authors of the study.

Since the method effectively imitates the brain’s own processes, it reduces the risk of tumour formation, one of the most common obstacles in stem cell research. The quick, simple technique makes the cells mature faster, which both makes the transplant safer and helps the cells integrate better into the brain. The results of the study bring stem cell research closer to transplant trials in the human brain.

“We have used the new protocol to make dopamine neurons, the type of neuron that is affected by Parkinson’s disease, and for the first time, we are seriously talking about these cells as being good enough to move forward for transplantation in patients. The next step is to test the process on a larger scale and to carry out more pre-clinical safety tests”, explains Malin Parmar, research team leader.

The research is presented in the report ‘Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions’ in the journal Cell Reports.

The study has been conducted as part of the EU 7th Framework Programme project NeuroStemcell.

For more information, please contact:
Malin Parmar +46 709 823901, Malin.Parmar@med.lu.se
Agnete Kirkeby +45 5168 5353, Agnete.Kirkeby@med.lu.se

Ingemar Björklund | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>