Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Staying in Shape

16.08.2018

3D analysis of retinal tissue shows how to keep shape during organ growth

During the early development of an embryo, many tissues and organs already form their final shape. This shape has to be maintained while the organism keeps growing. As the correct shape of a tissue is often essential for its proper function, it is crucial to understand how it remains unchanged while the organism grows and develops.


Manually segmented zebrafish retinas (grey) and lenses (blue) at different developmental stages. Tissue scaling during retinal growth is enabled by timely tissue-wide cell elongation.

Matejčić / Norden, MPI-CBG

So far, the interaction between cells inside tissues that enable growth while keeping shape are still poorly understood. Scientists at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden in collaboration with Guillaume Salbreux from the Francis Crick Institute, present a 3D study of eye growth over development.

They were able to show that elongated cells are the key to maintain the shape of the retinal tissue during growth of a zebrafish. This concept could also apply to other organisms. The researchers published their findings in the journal PLOS Biology.

Understanding how tissues properly form and grow during the development of an organism is an important question in biology. Many tissues establish their shape early in development and thus need to maintain this shape as the tissue grows, similar to a balloon, which keeps the same form when you blow it up. This is the case for many human tissues, such as the nose or the eye.

The correct shape of a tissue or organ is often essential for its function, so it is crucial to understand for example how a tiny nose can maintain its shape while it is growing. The behaviors of cells underlying such coordinated growth still need to be identified. Previous studies mostly explored tissue growth and shape in two dimensions. Thus, an evaluation of tissue growth in three dimensions is still needed to fully comprehend shape and size.

About the MPI-CBG
The Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) is one of 84 institutes of the Max Planck Society, an independent, non-profit organization in Germany. 500 curiosity-driven scientists from over 50 countries ask: How do cells form tissues? The basic research programs of the MPI-CBG span multiple scales of magnitude, from molecular assemblies to organelles, cells, tissues, organs, and organisms.

The team around MPI-CBG research group leader Dr. Caren Norden in collaboration with Guillaume Salbreux, a former colleague from the Max Planck Institute for the Physics of Complex Systems and now at the Francis Crick Institute, set out to explore these important, exciting questions and took advantage of the exceptional imaging possibilities that exist for the developing zebrafish. A tissue that was particularly suitable for this study is the retinal neuroepithelium, an important part of the central nervous system which forms a cup with a smooth surface early in development.

Later, while still keeping its shape, this neuroepithelium forms a neuronal tissue, that will transmit the light impulses from the eye to the brain. Thus, for the retina, it is particularly important to form with an undisturbed shape, so light can pass through it smoothly. The first author of the study, Dr. Marija Matejčić explains: “We showed that cells that build the retina need to elongate to maintain the shape of the tissue unchanged while it grows. Retinal cells elongate together, after redistributing an inner component at the same time throughout the tissue. In this way, the cells and the tissue stay in great shape!”

The protein actin plays a crucial role in this process: a redistribution of actin at a right time makes sure that the height of cells can increase. If, on the other hand, the actin redistribution is blocked, the cell height does not increase, which leads to a disturbed, folded tissue shape of the otherwise smooth retinal tissue which would interfere with organ function

“This study provides an important example of how growth of a tissue that needs to maintain its form is achieved through changes of cell shape,” says Dr. Caren Norden, who oversaw the study. The concept could also apply to other organisms or the increasingly popular organoids. Dr. Norden adds: “The next challenge will be to expand investigations to growth phenomena in organoid systems, miniature, simple and lab-grown versions of an organ, including human organoids. This will deepen our understanding of developmental programs in model organisms and humans.”

Wissenschaftliche Ansprechpartner:

Caren Norden
+49 (0) 351 210 2802
norden@mpi-cbg.de

Originalpublikation:

Marija Matejčić, Guillaume Salbreux, Caren Norden
A non-cell-autonomous actin redistribution enables isotropic retinal growth
PLoS Biol, August 10, 2018. https://doi.org/10.1371/journal.pbio.2006018

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik
Further information:
https://www.mpi-cbg.de/de/home/

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>