Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Staying in Shape

16.08.2018

3D analysis of retinal tissue shows how to keep shape during organ growth

During the early development of an embryo, many tissues and organs already form their final shape. This shape has to be maintained while the organism keeps growing. As the correct shape of a tissue is often essential for its proper function, it is crucial to understand how it remains unchanged while the organism grows and develops.


Manually segmented zebrafish retinas (grey) and lenses (blue) at different developmental stages. Tissue scaling during retinal growth is enabled by timely tissue-wide cell elongation.

Matejčić / Norden, MPI-CBG

So far, the interaction between cells inside tissues that enable growth while keeping shape are still poorly understood. Scientists at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden in collaboration with Guillaume Salbreux from the Francis Crick Institute, present a 3D study of eye growth over development.

They were able to show that elongated cells are the key to maintain the shape of the retinal tissue during growth of a zebrafish. This concept could also apply to other organisms. The researchers published their findings in the journal PLOS Biology.

Understanding how tissues properly form and grow during the development of an organism is an important question in biology. Many tissues establish their shape early in development and thus need to maintain this shape as the tissue grows, similar to a balloon, which keeps the same form when you blow it up. This is the case for many human tissues, such as the nose or the eye.

The correct shape of a tissue or organ is often essential for its function, so it is crucial to understand for example how a tiny nose can maintain its shape while it is growing. The behaviors of cells underlying such coordinated growth still need to be identified. Previous studies mostly explored tissue growth and shape in two dimensions. Thus, an evaluation of tissue growth in three dimensions is still needed to fully comprehend shape and size.

About the MPI-CBG
The Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) is one of 84 institutes of the Max Planck Society, an independent, non-profit organization in Germany. 500 curiosity-driven scientists from over 50 countries ask: How do cells form tissues? The basic research programs of the MPI-CBG span multiple scales of magnitude, from molecular assemblies to organelles, cells, tissues, organs, and organisms.

The team around MPI-CBG research group leader Dr. Caren Norden in collaboration with Guillaume Salbreux, a former colleague from the Max Planck Institute for the Physics of Complex Systems and now at the Francis Crick Institute, set out to explore these important, exciting questions and took advantage of the exceptional imaging possibilities that exist for the developing zebrafish. A tissue that was particularly suitable for this study is the retinal neuroepithelium, an important part of the central nervous system which forms a cup with a smooth surface early in development.

Later, while still keeping its shape, this neuroepithelium forms a neuronal tissue, that will transmit the light impulses from the eye to the brain. Thus, for the retina, it is particularly important to form with an undisturbed shape, so light can pass through it smoothly. The first author of the study, Dr. Marija Matejčić explains: “We showed that cells that build the retina need to elongate to maintain the shape of the tissue unchanged while it grows. Retinal cells elongate together, after redistributing an inner component at the same time throughout the tissue. In this way, the cells and the tissue stay in great shape!”

The protein actin plays a crucial role in this process: a redistribution of actin at a right time makes sure that the height of cells can increase. If, on the other hand, the actin redistribution is blocked, the cell height does not increase, which leads to a disturbed, folded tissue shape of the otherwise smooth retinal tissue which would interfere with organ function

“This study provides an important example of how growth of a tissue that needs to maintain its form is achieved through changes of cell shape,” says Dr. Caren Norden, who oversaw the study. The concept could also apply to other organisms or the increasingly popular organoids. Dr. Norden adds: “The next challenge will be to expand investigations to growth phenomena in organoid systems, miniature, simple and lab-grown versions of an organ, including human organoids. This will deepen our understanding of developmental programs in model organisms and humans.”

Wissenschaftliche Ansprechpartner:

Caren Norden
+49 (0) 351 210 2802
norden@mpi-cbg.de

Originalpublikation:

Marija Matejčić, Guillaume Salbreux, Caren Norden
A non-cell-autonomous actin redistribution enables isotropic retinal growth
PLoS Biol, August 10, 2018. https://doi.org/10.1371/journal.pbio.2006018

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik
Further information:
https://www.mpi-cbg.de/de/home/

More articles from Life Sciences:

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

nachricht Gene mutation in the chloride channel triggers rare high blood pressure syndrome
17.10.2019 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Chains of atoms move at lightning speed inside metals

17.10.2019 | Materials Sciences

Stretchable circuits: New process simplifies production of functional prototypes

17.10.2019 | Materials Sciences

Scientists discover method to create and trap trions at room temperature

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>