Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starving inflammatory immune cells slows damage caused by multiple sclerosis

02.09.2011
In a paper published today in the journal Scientific Reports, a pair of researchers at the University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences report that inhibiting the ability of immune cells to use fatty acids as fuel measurably slows disease progression in a mouse model of multiple sclerosis (MS).

MS is an autoimmune disease resulting from damage to the myelin sheath, a protective layer surrounding nerve cells. When the sheath is damaged, nerve impulses are slowed or halted, resulting in progressive physical and neurological disabilities. The cause of the damage is inflammation occurring when the body's immune cells attack the central nervous system (CNS).

Marianne Manchester, PhD, professor of pharmacy and first author Leah P. Shriver, PhD, looked at how immune cells in the CNS oxidize fatty acids for energy when their preferred fuel source – glucose – is in short supply, which may occur in inflamed tissues. In a mouse model mimicking chronic MS, Manchester and Shriver discovered that by inhibiting a single enzyme that helps immune cells effectively exploit fatty acids, the cells eventually starved and died, preventing further inflammatory damage.

Currently, no approved drug or therapy for MS targets fatty acid metabolism. And the specificity of the target – inhibiting a single enzyme – suggests that adverse side effects associated with existing treatments, such as increased infection risk, is unlikely.

"We expect that because immune cells not in lesions in the CNS are able to use available glucose, they will function just fine during infection and that inhibition of this pathway would not produce general immune suppression," Shriver said.

The enzyme-inhibitor used by Manchester and Shriver in their study is a drug already tested in humans with congestive heart failure, and was generally well-tolerated. The scientists are now using mass spectrometry to determine whether their results in the mouse model are translatable to humans. "We are interested in determining how this pathway is utilized in human tissue samples from MS patients," Manchester said.

Funding for this study came from the National Institutes of Health and the National Institute of Neurological Disorders and Stroke.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: CNS Starving fatty acid immune cell mouse model nerve cell single enzyme

More articles from Life Sciences:

nachricht Breakthrough in designing a better Salmonella vaccine
25.09.2018 | University of California - Davis

nachricht Proof of Concept: Gene therapy for mitochondrial diseases
25.09.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Establishing metastasis

25.09.2018 | Health and Medicine

Artificial intelligence to improve drug combination design & personalized medicine

25.09.2018 | Health and Medicine

Small modulator for big data

25.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>