Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stability without junctions

28.12.2016

Cadherin prevents cortical deformation

Scientists from the Mechanobiology Institute, Singapore (MBI) at the National University of Singapore (NUS) have discovered that cadherin clusters, which are well known for forming junctions between cells, also play a role in stabilising the cell cortex. The study was published in the scientific journal Current Biology on 15 December 2016.


Figure: Surface and equatorial plane views of the C. elegans embryo. Non-junctional and non-adhesive HMR-1 clusters (green dots) are visible on the surface of a single cell and also on both cells following cell division. A belt of HMR-1 forming cell-cell junctions is observed between the 2 daughter cells (white-green line).

Credit: Mechanobiology Institute, National University of Singapore

A new role for cadherin

Multicellular life depends on the ability of cells to adhere to one another. This takes place through cell-cell junctions, protein complexes that physically connect cells together. At the core of cell-cell junctions is the protein cadherin, which spans across the cell membrane, sticking out of the cell to connect to cadherins on neighbouring cells. Cadherin also attaches to the internal cell cortex, a dense layer of proteins underneath the cell membrane which has two major components: the filament-forming protein actin that provides structural stability, and the motor protein myosin that enables dynamic movement of the cortex depending on the needs of the cell. This physical bridge between cells enables the transmission of both mechanical and biochemical signals across multicellular tissues.

However, scientists have observed clusters of cadherin on the cell surface which are not involved in cell-cell junctions. While it has been speculated that these non-junctional and non-adhesive cadherin clusters are being kept in reserve in order to strengthen or create new cell-cell junctions, the actual function of these clusters remained unknown.

With their expertise in cell adhesion and developmental biology, Principal Investigator Assistant Professor Ronen Zaidel-Bar and Research Fellow Dr Anup Padmanabhan of MBI used embryos from the nematode C. elegans to probe the function of these non-junctional cadherin clusters. After tagging the worm equivalent of cadherin, a protein named HMR-1, with a fluorescent marker, they were able to follow its location and movement by live imaging.

Focusing their investigation on the zygote, the single fertilised egg cell that develops into an embryo, they discovered that HMR-1 formed non-junctional, non-adhesive clusters similar to cadherin. Even though these non-junctional HMR-1 clusters did not form connections outside of the cell, they still remained internally associated with actin filaments of the cell cortex, but not the myosin motor proteins. In fact, the presence of non-junctional HMR-1 clusters prevents cortical accumulation of myosin and decreases the contractile activity of proteins that drive cortical movement.

In order to determine whether non-junctional HMR-1 affected cytokinesis - the physical process by which the cell cortex rotates and contracts to divide the cell into two - the scientists genetically altered the level of HMR-1. Reducing the amount of HMR-1 resulted in faster cytokinesis while increasing HMR-1 levels slowed it down, demonstrating that these non-junctional clusters have a key function in regulating movement of the cell cortex. Analysis of cortical dynamics during cell division revealed that HMR-1 clusters attached to the actin filaments effectively provided drag against cytoskeleton movement, by acting as structural anchors lodged in the cell membrane. The importance of this anchoring in maintaining cell integrity became clear following extended observation of embryos with reduced levels of HMR-1, which were vulnerable to cortical splitting, where a segment of cortex tears away from the cell membrane.

In essence, the non-junctional HMR-1 clusters can be thought of as cellular staples that help secure the cortex to the cell surface. The friction from the clusters stabilises the cortex and slows down cortical flow, preventing dramatic cortical deformation, while allowing enough cortical movement for fundamental processes like cytokinesis.

This new discovery means that scientists must re-evaluate their understanding of cadherin. The importance of non-junctional cadherin in stabilising the cell cortex must now be considered along with the classical function of cadherin in maintaining cell-cell junctions. This fresh perspective may unlock new avenues of investigation regarding the role of cadherin in health and disease.

Media Contact

Amal Naquiah
amal@nus.edu.sg
65-651-65125

 @NUSingapore

http://www.nus.edu.sg/ 

Amal Naquiah | EurekAlert!

Further reports about: MBI actin filaments cadherin cell membrane cell surface cortical filaments

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>