Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spun-sugar fibers spawn sweet technique for nerve repair

02.03.2009
Researchers at Purdue University have developed a technique using spun-sugar filaments to create a scaffold of tiny synthetic tubes that might serve as conduits to regenerate nerves severed in accidents or blood vessels damaged by disease.

The sugar filaments are coated with a corn-based degradable polymer, and then the sugar is dissolved in water, leaving behind bundles of hollow polymer tubes that mimic those found in nerves, said Riyi Shi, an associate professor in Purdue's Weldon School of Biomedical Engineering and Department of Basic Medical Sciences.

The scaffold could be used to promote nerve regeneration by acting as a bridge placed between the ends of severed nerves, said biomedical engineering doctoral student Jianming Li, who is a member of Shi's research team that developed the technique.

The researchers are initially concentrating on the peripheral nerves found in the limbs and throughout the body because nerve regeneration is more complex in the spinal cord. About 800,000 peripheral nerve injuries are reported annually in the United States, with about 50,000 requiring surgery.

The approach also might have applications in repairing blood vessels damaged by trauma and disease such as atherosclerosis and diabetes, Shi said.

The new approach represents a potential alternative to the conventional surgical treatment, which uses a nerve "autograft" taken from the leg or other part of the body to repair the injured nerves. Researchers are trying to develop artificial scaffolds to replace the autografts because removing the donor nerve causes a lack of sensation in the portion of the body where it was removed.

"The autograft is the lesser of two evils because you have to sacrifice a healthy nerve to repair a damaged segment," said Li, who led the research.

New findings were published online in December and this month in the print edition of the journal Langmuir. The paper was written by Li, biomedical engineering doctoral student Todd A. Rickett and Shi. Rickett also is attending the Indiana University School of Medicine in an MD-Ph.D. program.

Researchers from Cornell University published similar findings online Feb. 9 in the journal Soft Matter. Those findings focused on using the technique to create vascular networks for providing blood and nutrients to tissues and grafts.

The synthetic scaffold resembles the structural assembly of natural nerves, which are made of thousands of small tubes bundled together. These tubes act as sheaths that house the conducting elements of the nerve cell.

The first step in making the tubes is to spin sugar fibers from melted sucrose.

"It's basically like making cotton candy," Li said.

The sugar filaments were coated with a polymer called poly L-lactic acid. After the filaments were dissolved, hollow tubes of the polymer remained. The researchers then grew nerve-insulating cells called Schwann cells on these polymer tubes. These cells automatically aligned lengthwise along the tubes, as did nerve cells grown on top of the Schwann cells.

This alignment is critical for the fast growth of nerves, Shi said.

Nerve cells grew not only inside the hollow tubes but also around the outside of the tubes.

"This finding is important because the increased surface area may accelerate the regeneration process following an accident," Li said.

The scaffolds are designed specifically to regenerate a portion of a nerve cell called the axon, a long fiber attached to the cell body that transmits signals. Fast regeneration is essential to prevent the atrophy of muscles and organs connected to severed nerves.

The researchers also discovered that the polymer tubes contain pores that are ideal for supplying nutrients to growing nerve cells and removing waste products from the cells.

Images of the polymer-coated sugar strands were taken using a scanning electron microscope. Another instrument, called an atomic force microscope, was used to obtain images of the hollow tubes and pores in the walls of the tubules. Other images using fluorescent dyes revealed the nerve cell alignment along the tubes.

The work was done using cell cultures in petri dishes, but ongoing work focuses on implanting the scaffolds in animals.

The method for creating the scaffolds is relatively simple and inexpensive and does not require elaborate laboratory equipment, Shi said.

"This is low-tech," he said. "We used the same kind of sugar found in candy and a cheap polymer to make samples of these scaffolds for a few dollars. The process easily lends itself to mass production. It is a unique idea, and the simplicity and efficiency of this technology distinguish it from other approaches for nerve repair."

A provisional patent application on the material has been filed.

This study was conducted at Purdue's Center for Paralysis Research, which receives funding support from the state of Indiana. Shi's lab is supported by both the National Institutes of Health and the National Science Foundation. Li was supported by the NSF's Graduate Teaching Fellows in K-12 Education Program, which strives to help graduate students bring their research and practice into the K-12 classrooms and inspire students to pursue careers in science and engineering. Li used knowledge gained in the laboratory to teach middle school students and worked on curriculum development. Rickett is supported through the Indiana Clinical and Translational Sciences Institute, which funds research on developing new technologies into effective medical therapies.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Riyi Shi, (765) 496-3018, riyi@purdue.edu
Jianming Li. (765) 496-3018, jianming@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>