Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the spotlight: Tiny "heroes" in the depths of the Baltic and Black Sea

23.01.2012
Microbiologists from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) provide the first comprehensive description of a bacterium that, on the limits of the so-called "dead zones" in the Baltic and Black Sea, prevents the spread of poisonous hydrogen sulfide.

Oxygen is also a vital element under water. In the world's oceans, however, the development of oxygen-minimum zones is an increasing trend. Among the most prominent representatives of this phenomenon are the so-called "dead zones" in the Baltic and Black Sea, where regularly—and in the case of the Black Sea even permanently— an oxygen deficiency accompanied by the occurrence of toxic hydrogen sulfide (sulfide) has been determined at the sea floor.

Furthermore, in maritime regions of enormous importance to the global fishing industry, such as the nutrient-rich upwelling off the southwest coast of Africa, oxygen minimum zones also occur.

Due to the severe economic damage posed by these phenomena and their postulated—and to some extent already observed—increase, biogeochemists and microbiologists throughout the world have been working with physical oceanographers to investigate the causative mechanisms. That the spread of sulfides can be prevented by bacteria has been known for some time, but, it was unclear how this process exactly works, as little was known about the organisms involved.

The microbiologists of the IOW have succeeded, for the first time, in isolating a bacterium that is a major player in sulfide detoxification in oxygen minimum zones. They have also been able to cultivate it and thus to study its physiology. In addition, together with colleagues at the Max Planck Institute for Marine Microbiology in Bremen, they were able to produce a detailed genetic map of the bacterium.

"Sulfurimonas gotlandica" is the provisional designation of the representative of the so-called Epsilonproteobacteria that the Warnemünde scientists found in high abundance at the boundary layer between oxygen-containing (oxic) and oxygen-free (anoxic) water in the Gotland Basin in the central Baltic Sea. It possesses remarkable properties in that its choice of energy sources is not restricted to sulfide but is extremely flexible, allowing the bacterium to inhabit oxic as well as anoxic waters. Genetic analysis showed that "S. gotlandica" is equipped with environmental sensors and a high mobility, allowing it to actively seek out environments that energetically are the most favorable. Moreover, along with its ecologically very important ability of sulfide detoxification "S. gotlandica" possesses two other very important characteristics: it is capable of reducing nitrate to elemental nitrogen (so-called denitrification), thereby ridding eutrophic waters of excess nitrogen, and can use the resulting energy to fix CO2 in the dark in order to build up biomass.

With "S. gotlandica," the Warnemünde microbiologists now have a model organism that is both representative of a group of relatively uncommon bacteria and which allows important processes, such as sulfide detoxification, to be studied in the laboratory. This will facilitate research by the greater scientific community that is aimed at understanding marine "dead zones" and possibly even allow active influence of their development. The working group led by Klaus Jürgens has proven once again that the Baltic Sea, with its highly changeable environmental conditions and strong gradients, is an ideal "model ocean" for the investigation of processes occurring worldwide.

The work described was carried out with support from the Deutsche Forschungsgemeinschaft and the Federal Ministry for Education and Research. The results have been published in:

Grote, J., Schott, T. Bruckner, C.G., Glöckner, F.O., Jost, G., Teeling, H., Labrenz, M., Jürgens, K. (2012): Genome and physiology of a model for responsible Epsilonproteobacterium sulfide detoxification in marine oxygen depletion zones. PNAS 109: 506-510.

For further information, contact:
Prof. Dr. Klaus Jürgens, 0381 / 5197 250, Department Biological Oceanography, IOW
Dr. Barbara Hentzsch, 0381 / 5197 102, Public Relations, IOW

The IOW is a member of the Leibniz Association, which currently includes 87 research institutes and a scientific infrastructure for research. The Leibniz Institutes' fields range from the natural sciences, engineering and environmental sciences, business, social sciences and space sciences to the humanities. Federal and state governments together support the Institute. In total, the Leibniz Institute has 16 800 employees, of which approximately are 7,800 scientists, and of those 3300 young scientists. The total budget of the Institute is more than 1.4 billion Euros. Third-party funds amount to approximately € 330 million per year.(www.leibniz-gemeinschaft.de)

Dr. Barbara Hentzsch | idw
Further information:
http://www.leibniz-gemeinschaft.de

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>