Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sporadic mutations identified in children with autism spectrum disorders

17.05.2011
Researchers sequenced the protein-coding sections of the genomes of affected children and their parents to find mutations

Scientists at the University of Washington (UW) Department of Genome Sciences have identified several sporadic or "de novo" genetic mutations in children with autism spectrum disorder. The researchers applied leading edge molecular biology techniques and massively parallel sequencing to simultaneously examine all of the protein coding portions of the genome, collectively called the exome.

The research was published in advance online Sunday, May 15, in Nature Genetics.

The study was led by Dr. Brian O'Roak, senior fellow in the UW Department of Genome Sciences, and senior authors Dr. Evan Eichler, UW professor of genome sciences and a Howard Hughes Medical Institute investigator, and Dr. Jay Shendure, UW assistant professor of genome sciences.

O'Roak and colleagues analyzed the exomes of 20 individuals with autism spectrum disorder and their parents, an approach called trio-based exome sequencing. Autism spectrum disorders encompass a range of social impairments in language, communicating and interacting with others, repetitive behaviors, and engrossing fascinations. The condition can be mildly to severely disabling.

The researchers found 21 newly occurring mutations, 11 of which altered proteins. Proteins altered by genetic mutations may hold clues to the biological pathways involved in the development of the disease. The abnormal proteins or the pathways they affect could draw interest as targets in the design of preventive or treatment drugs.

O'Roak's fellowship at the UW, as well as part of the research itself, was supported by American Recovery and Reinvestment Act funding from the U.S. government. O'Roak said, "I came to the UW with the specific plan to use the latest genomic technology to study autism because it affects the lives of so many children, adults and their families."

In four of the 20 families studied, O'Roak and colleagues identified disruptive new mutations that are potentially causative for autism. In examining the clinical data on the child in each of the four families, they learned that these children were among the most severely affected of the study group, both in intellectual disability and in their autistic features.

These initial findings point to the possibility that these new sporadic disruptive genetic mutations could contribute substantially to the underlying mechanisms and severity of autism in perhaps 20 percent of the cases in which no larger family history of autism exists. In some cases, the combination of newly appearing mutations and those inherited from the parents may worsen the severity of the disorder.

"The results of the study suggest a multi-hit model as a trend, but this possibility would need to be further explored by comparing a much larger number of affected and unaffected siblings," said Eichler.

In this study, many of the discovered mutations were located in genome areas that were highly conserved during evolution. These parts of the genome likely play a fundamental role in the biology of many animals, including humans. Mutations in these regions tend to have significant repercussions.

"Consistent with the complexity of autism and its symptoms, the new mutations were identified in several different genes," lead author O'Roak said. Moreover, many of these mutated genes have already been associated with other brain disorders, including epilepsy, schizophrenia and intellectual disability -- reflecting a surprising genetic overlap.

Eichler explained that scientists are not sure what the genetic overlap means. It could point to common underlying mechanisms in the development of these neurological diseases, or different manifestations stemming from similar genetic lesions. It might also be due to many other factors, such as environmental triggers or other genes in a person's make-up that influence how and when genes operate, whether or not a disease will appear in a genetically susceptible individual, and what type of disease it will be.

How and why sporadic mutations such as these originate is as yet unknown. However researchers are uncovering clues about risk factors.

In six of the affected children in this study, the scientists were able to trace the original genes that were later mutated in the child back to the father's half the child's genome, and in one case to the mother's half.

These genetic findings further support population studies showing that autism is more common among children of older parents, especially older fathers. Eichler explained that certain genetic mutations might more likely occur during sperm formation as men age.

The scientists wrote, "The identification of de novo events along with disruptive inherited mutations underlying sporadic cases of autism spectrum disorders has the potential to fundamentally transform our understanding of the genetic basis of autism."

"Our results," Shendure noted, "show that trio-based exome sequencing is a powerful approach for identifying new candidate genes for autism spectrum disorders."

From identifying mutations, researchers hope to learn more about the biology of autism and to understand interacting genetic and environmental factors within the context of families with affected and unaffected members.

In addition to O'Roak, Shendure and Eichler, other researchers on the study included Pelagia Deriziotis from the Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom; Choli Lee, Laura Vives, Jerrod J. Schwartz, Santosh Girirajan, Emre Karakoc, Alexandra P. MacKenzie, Sarah B. Ng, Carl Baker, Mark J. Rieder, Deborah A. Nickerson, all from the UW Department of Genome Sciences in Seattle; Raphael Bernier of the UW Department of Psychiatry and Behavioral Sciences; and Simon E. Fisher of the Wellcome Trust Centre for Human Genetics and the Language and Genetics Department of the Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.

The research was funded by the United States National Institutes of Health, Wellcome Trust, Max Planck Society, the Simons Foundation Autism Research Initiative, and the Howard Hughes Medical Institute.

The researchers are especially grateful to the families who volunteered their time to participate in this study.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>