Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spider venom is a dangerous cocktail

02.05.2019

Spider venom does not only consist of neurotoxins but also of a multitude of dangerous constituents. Researchers of the University of Bern present a summary of many years of spider venom research in a new study and show how various substances present in spider venom interact with each other and thus effectively render the spider's prey defenseless.

Over the past decades, the research of spider venom mainly focused on the neurotoxins it contains. This involved understanding the paralyzing and toxic effect of individual components of the venom on arthropods and vertebrates. Researchers spread all over the world were successful in identifying neurotoxins and their effects.


The wandering spider Cupiennius salei from Central America has a legspan of approx. ten centimeters.

© Institute of Ecology and Evolution, University of Bern

These findings were intended to be used for combating diseases of the nervous system. So far, the development of new insecticides has been particularly successful. However, the great complexity of spider venoms, which goes far beyond the pure neurotoxins, has long been disregarded.

Under the direction of Lucia Kuhn-Nentwig and Wolfgang Nentwig, researchers of the Institute of Ecology and Evolution (IEE) of the University of Bern recently published an article in the journal Toxins that gives an overview of many years of research on various components of spider venom. The study shows that spider venom causes manifold interactions in the spiders' preys.

A combined offensive

Researchers of the IEE examine the spider venom in the laboratory using the example of the venom of the wandering spider Cupiennius salei. These spiders from Central America have a legspan of approx. ten centimeters and do not produce a web for trapping prey. Researchers use the term dual prey-inactivation strategy for describing the complex effect mechanism of the venom.

This strategy contains a specific, neurotoxic part as well as a nonspecific, metabolic part. "Both parts of the strategy interact very closely. The venom targets not only the muscles and the nervous system of the prey; the internal homeostasis, the physiological balance of an organism, is also disrupted by the blockade of ion channels and various metabolic pathways," Lucia Kuhn-Nentwig explains.

Optimally coordinated

There are multiple synergistic interactions between the components of the venom. The toxic components, for example, attack the muscles and the nervous system which leads to cramps and paralysis. Furthermore, the internal tissue of the prey is destroyed which facilitates the spread of the venom and causes pain and inflammation over the long term.

On the other hand, other components affect the energy balance and increase blood sugar, which considerably disturbs the prey's bodily functions. In terms of effect, the main components of the venom are efficiently linked with each other as well as with various metabolic pathways. "This dual prey-inactivation strategy is very effective and reduces the risk of the spider losing the prey as well as the risk of potential prey developing a resistance to spider venom in the long run," Lucia Kuhn-Nentwig says.

"An entire armada of substances"

In order to better understand spider venom, the scientist and her colleagues investigated all RNA molecules produced in the venom glands (the so-called transcriptome). The identification of ?-amylase as the main protein in spider venom was a key moment for the researchers. "Based on this, we were in a position to understand the existence of many other peptides and proteins contributing to the toxic effect of spider venom," Kuhn-Nentwig explains.

Even though this principle of the effect of spider venom was developed on one species (Cupiennius salei), it can be generalized for most other species of spiders. Kuhn-Nentwig summarizes: "Spider venom is more than just a toxin – it is an entire armada of substances that attack, paralyze and kill an organism in a maximum of many different ways."

Publication:
Kuhn-Nentwig, L., Langenegger, N., Heller, M., Koua, D., & Nentwig, W.: The Dual Prey-Inactivation Strategy of Spiders—In-Depth Venomic Analysis of Cupiennius salei. Toxins, 2019, 11(3), 167. https://doi.org/10.3390/toxins11030167

Contact:
Dr. Lucia Kuhn-Nentwig
University of Bern
Institute of Ecology and Evolution
Phone: +41 31 631 45 32 / lucia.kuhn@iee.unibe.ch

Prof. em. Dr. Wolfgang Nentwig
University of Bern
Institute of Ecology and Evolution
Phone: +41 31 631 45 32 / wolfgang.nentwig@iee.unibe.ch

Wissenschaftliche Ansprechpartner:

Dr. Lucia Kuhn-Nentwig
University of Bern
Institute of Ecology and Evolution
Phone: +41 31 631 45 32 / lucia.kuhn@iee.unibe.ch

Prof. em. Dr. Wolfgang Nentwig
University of Bern
Institute of Ecology and Evolution
Phone: +41 31 631 45 32 / wolfgang.nentwig@iee.unibe.ch

Originalpublikation:

Kuhn-Nentwig, L., Langenegger, N., Heller, M., Koua, D., & Nentwig, W.: The Dual Prey-Inactivation Strategy of Spiders—In-Depth Venomic Analysis of Cupiennius salei. Toxins, 2019, 11(3), 167. https://doi.org/10.3390/toxins11030167

Weitere Informationen:

https://www.unibe.ch/news/media_news/media_relations_e/media_releases/2019/medie...

Nathalie Matter | Universität Bern

Further reports about: Cupiennius salei ecology metabolic pathways nervous system neurotoxins spiders venom

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>