Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speech dynamics are coded in the left motor cortex

31.03.2015

Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter. Published in BRAIN

Speaking fluently can be challenging even for a political or mathematical genius such as Winston Churchill and Alan Turing, as recently illustrated for the latter in the movie „The Imitation Game“. It demonstrates obvious but temporary breakdowns in speech flow. New research has now shown that the way how speech motor areas of the brain prepare for intended speech is abnormal in adults suffering from persistent developmental stuttering, as reported in this month in Brain.

Original publication: Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter. Neef NE, Hoang TN, Neef A, Paulus W, Sommer M. Brain. 2015 Mar;138 (Pt 3):712-25. PMID: 25595146

Moving the right leg or arm requires the activation of the motor area in the left hemisphere of the brain. Conversely, orofacial midline muscles such as tongue, lips, jaw, and vocal folds are bilaterally controlled – both hemispheres innervate both sides of the articulatory apparatus. For this reason it would be plausible to expect that operating neurons are similarly excited in both hemispheres during speaking. But this is not the case.

Drs. Nicole Neef and Martin Sommer from the University Medical Center Göttingen, together with Dr. Andreas Neef from the Max Planck Institute for Dynamics and Self-Organization, Göttingen, used a technique with high temporal resolution and a direct functional read-out: they stimulated the cortical area that controls the tongue with brief electromagnetical pulses while participating subjects were speaking. The stimulation efficiency was monitored with electrodes on the tongue.

This allowed them, for the first time, to track changes in the local cortical excitability that accompanied the transition between speech gestures. In control subjects, excitability in the left hemisphere motor area increased during this transition, indicating a speech motor preparation confined to the left brain hemisphere. In adults who stutter, this pattern was lacking on the left side. The more severe individuals stuttered the more impaired was the speech motor preparation in the left hemisphere.

These results integrate structural and neurophysiological findings into a plausible model of speech pathophysiology in persistent developmental stuttering. They pinpoint the left primary motor cortex and its interconnected areas as key players in the generation of fluent speech, and will pave the way to directly modulating the excitability of these areas to influence speech fluency.

FURTHER INFORMATION:
Universitätsmedizin Göttingen, Georg-August-Universität
Klinik für Klinische Neurophysiologie
Prof. Dr. Martin Sommer
Phone: +49 (0) 551 / 39-8463
msommer@gwdg.de
Robert-Koch-Straße 40, 37075 Göttingen

Stefan Weller | idw - Informationsdienst Wissenschaft
Further information:
http://www.universitaetsmedizin-goettingen.de/

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>