Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Species diversity protects the climate

07.04.2015

Plants remove carbon dioxide from the air and incorporate it into plant biomass. A portion of this “fixed” carbon can be stored longer term in the soil through root systems and decomposition after plant death. A study of the Max Planck Institute for Biogeochemistry has demonstrated now for the first time how the biological diversity of plants increases this carbon storage. Species diversity not only boosts the formation of plant biomass but also increases the activity and genetic diversity of soil microorganisms, which increasingly transform plant carbon into soil organic matter. Carbon is thus bound for longer and sustainably removed from the atmosphere where it acts as greenhouse gas.

The richness of species in an ecosystem is not only a source of joy for nature lovers; it also defines an ecosystem’s functional characteristics and potentially maintains stability with climatic change.


On the left: positive impact of plant diversity on microbial carbon storage, on the right: experimental field site of long-term study 'The Jena Experiment'

Graphics: Markus Lange & Lisa Geesink, Picture author: Alexandra Weigelt ©MPI-BGC

For example, ecosystems dominated by plants play a central role in the global carbon cycle: through photosynthesis, grasses, trees, and other plants transform atmospheric carbon dioxide into plant biomass. The carbon they bind in this way then reaches the soil as organic matter via plant litter and root exudates and can be stored there.

The fact that extensive plant diversity promotes the storage of carbon in the soil has already been demonstrated by previous studies; however, the exact mechanism behind this process was not known up to now.

An international research team headed by Gerd Gleixner and Markus Lange both scientists at the Max Planck Institute for Biogeochemistry in Jena, investigated why ecosystems with extensive species diversity bind more carbon than others with fewer species.

To do so they used the test plots of the Jena Experiment, a long-term project being carried out jointly by the Max Planck researchers and the Friedrich Schiller University Jena to examine the influence of biodiversity on elemental fluxes in nature. The research team compared grasslands of different species composition which had been exposed to the same environmental conditions for a nine-year period.

The scientists observed that, unlike their species-poor counterparts, species-rich grasslands provide the soil microorganisms with more nutrients and substances, and at the same time offer more favorable environmental conditions. “These factors led to greater genetic diversity and, in particular, to increased activity on the part of the microbial community,” says Markus Lange, first author of the study.

A high level of biodiversity appears to alter the metabolism of the microorganisms
Unexpectedly, the increased microbial activity did not result in the loss of carbon-rich matter in the soil as decomposition did not appear to increase. On the contrary, the microbial community added more carbon to the soil because it converted more plant biomass.

“In the presence of greater biodiversity, the microorganisms’ metabolism appears to have shifted towards anabolic activity,” says Lange, explaining the study findings. Moreover, as demonstrated by the age determination of the carbon molecules in the soil based on natural isotopes and carbon flow modelling, this “microbial” carbon is stored in the soil for longer.

The study thus demonstrates, for the first time, that a high level of plant diversity results in the long-term storage of carbon in the soil because it gives rise to a more varied composition and greater activity on the part of the microbial community.

From a global perspective, plant-rich ecosystems are particularly important for storing atmospheric carbon dioxide which would otherwise as greenhouse gas increase the warming of the Earth. How-ever, biodiversity is constantly being reduced through the impacts of climate change and increasing land use, and has reached a stage of global decline and species loss.

“Once again, our findings high-light the importance of biodiversity for important ecosystem functions like carbon storage,” says Gerd Gleixner. “The conservation of a high level of biodiversity ultimately sustainably counteracts the increasing accumulation of the greenhouse gas carbon dioxide in the atmosphere and hence climate change as well.”

The study of the Max Planck Institute for Biogeochemistry in Jena was published on April 7, 2015 in Nature Communications. The international research team was completed by Prof. Nico Eisenhauer (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig), Prof. Robert I. Griffith (Centre for Ecology & Hydrology, Wallingford,UK) as well as scientists from the Georg August University Göttingen, the Humboldt University Berlin, the Friedrich Schiller University Jena, and the Centre national de la recherche scientifique (CNRS), Montferrier-sur-Lez, France. (ml, ef)

Original publication
Plant diversity increases soil microbial activity and soil carbon storage
Markus Lange, Nico Eisenhauer, Carlos A. Sierra, Holger Bessler, Christoph Engels, Robert I. Griffiths, Perla G. Mellado-Vázquez, Ashish Malik, Jacques Roy, Stefan Scheu, Sibylle Steinbeiss, Bruce C. Thomson, Susan E. Trumbore, Gerd Gleixner. Nature Communications. DOI: 10.1038/ncomms7707

Contact:
apl. Prof. Dr. Gerd Gleixner
Dpt. Biogeochemical Processes
MPI for Biogeochemistry
07745 Jena, Germany
Phone: + 49 (0)3641-576172
Email: gerd.gleixner@bgc-jena.mpg.de

Dr. Markus Lange
Dpt. Biogeochemical Processes
MPI for Biogeochemistry
07745 Jena, Germany
Phone: + 49 (0)3641-576168
Email: mlange@bgc-jena.mpg.de

Weitere Informationen:

https://www.bgc-jena.mpg.de/bgp/pmwiki.php/Main/HomePage Home page of the research group

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>