Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Species diversity protects the climate

07.04.2015

Plants remove carbon dioxide from the air and incorporate it into plant biomass. A portion of this “fixed” carbon can be stored longer term in the soil through root systems and decomposition after plant death. A study of the Max Planck Institute for Biogeochemistry has demonstrated now for the first time how the biological diversity of plants increases this carbon storage. Species diversity not only boosts the formation of plant biomass but also increases the activity and genetic diversity of soil microorganisms, which increasingly transform plant carbon into soil organic matter. Carbon is thus bound for longer and sustainably removed from the atmosphere where it acts as greenhouse gas.

The richness of species in an ecosystem is not only a source of joy for nature lovers; it also defines an ecosystem’s functional characteristics and potentially maintains stability with climatic change.


On the left: positive impact of plant diversity on microbial carbon storage, on the right: experimental field site of long-term study 'The Jena Experiment'

Graphics: Markus Lange & Lisa Geesink, Picture author: Alexandra Weigelt ©MPI-BGC

For example, ecosystems dominated by plants play a central role in the global carbon cycle: through photosynthesis, grasses, trees, and other plants transform atmospheric carbon dioxide into plant biomass. The carbon they bind in this way then reaches the soil as organic matter via plant litter and root exudates and can be stored there.

The fact that extensive plant diversity promotes the storage of carbon in the soil has already been demonstrated by previous studies; however, the exact mechanism behind this process was not known up to now.

An international research team headed by Gerd Gleixner and Markus Lange both scientists at the Max Planck Institute for Biogeochemistry in Jena, investigated why ecosystems with extensive species diversity bind more carbon than others with fewer species.

To do so they used the test plots of the Jena Experiment, a long-term project being carried out jointly by the Max Planck researchers and the Friedrich Schiller University Jena to examine the influence of biodiversity on elemental fluxes in nature. The research team compared grasslands of different species composition which had been exposed to the same environmental conditions for a nine-year period.

The scientists observed that, unlike their species-poor counterparts, species-rich grasslands provide the soil microorganisms with more nutrients and substances, and at the same time offer more favorable environmental conditions. “These factors led to greater genetic diversity and, in particular, to increased activity on the part of the microbial community,” says Markus Lange, first author of the study.

A high level of biodiversity appears to alter the metabolism of the microorganisms
Unexpectedly, the increased microbial activity did not result in the loss of carbon-rich matter in the soil as decomposition did not appear to increase. On the contrary, the microbial community added more carbon to the soil because it converted more plant biomass.

“In the presence of greater biodiversity, the microorganisms’ metabolism appears to have shifted towards anabolic activity,” says Lange, explaining the study findings. Moreover, as demonstrated by the age determination of the carbon molecules in the soil based on natural isotopes and carbon flow modelling, this “microbial” carbon is stored in the soil for longer.

The study thus demonstrates, for the first time, that a high level of plant diversity results in the long-term storage of carbon in the soil because it gives rise to a more varied composition and greater activity on the part of the microbial community.

From a global perspective, plant-rich ecosystems are particularly important for storing atmospheric carbon dioxide which would otherwise as greenhouse gas increase the warming of the Earth. How-ever, biodiversity is constantly being reduced through the impacts of climate change and increasing land use, and has reached a stage of global decline and species loss.

“Once again, our findings high-light the importance of biodiversity for important ecosystem functions like carbon storage,” says Gerd Gleixner. “The conservation of a high level of biodiversity ultimately sustainably counteracts the increasing accumulation of the greenhouse gas carbon dioxide in the atmosphere and hence climate change as well.”

The study of the Max Planck Institute for Biogeochemistry in Jena was published on April 7, 2015 in Nature Communications. The international research team was completed by Prof. Nico Eisenhauer (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig), Prof. Robert I. Griffith (Centre for Ecology & Hydrology, Wallingford,UK) as well as scientists from the Georg August University Göttingen, the Humboldt University Berlin, the Friedrich Schiller University Jena, and the Centre national de la recherche scientifique (CNRS), Montferrier-sur-Lez, France. (ml, ef)

Original publication
Plant diversity increases soil microbial activity and soil carbon storage
Markus Lange, Nico Eisenhauer, Carlos A. Sierra, Holger Bessler, Christoph Engels, Robert I. Griffiths, Perla G. Mellado-Vázquez, Ashish Malik, Jacques Roy, Stefan Scheu, Sibylle Steinbeiss, Bruce C. Thomson, Susan E. Trumbore, Gerd Gleixner. Nature Communications. DOI: 10.1038/ncomms7707

Contact:
apl. Prof. Dr. Gerd Gleixner
Dpt. Biogeochemical Processes
MPI for Biogeochemistry
07745 Jena, Germany
Phone: + 49 (0)3641-576172
Email: gerd.gleixner@bgc-jena.mpg.de

Dr. Markus Lange
Dpt. Biogeochemical Processes
MPI for Biogeochemistry
07745 Jena, Germany
Phone: + 49 (0)3641-576168
Email: mlange@bgc-jena.mpg.de

Weitere Informationen:

https://www.bgc-jena.mpg.de/bgp/pmwiki.php/Main/HomePage Home page of the research group

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>