Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Species distribution models can exaggerate differences in environmental requirements

15.04.2010
Separate species that live in radically different environments don't necessarily also have different ecological niches. This is the finding of a study investigating the accuracy of current statistical tests that use models of geographic distributions to infer changes in environmental requirements.

In a new study published in the journal Systematic Biology, a model simulating the distributions of two imaginary species with identical environmental requirements, or ecological niches, was created. The model was tested to determine whether a variety of ecological niche modeling methods would correctly infer that the environmental requirements of the two species were identical.

In cases where environments were similar or only moderately different, many tests correctly inferred that the environmental requirements of two species were identical, but in the case of radically different environments, the results were biased toward suggesting different environmental requirements.

"If you have two separate populations that occupy different environments, what the study shows is that under some conditions, that observation is really useful and strongly suggests, for example, that you could re-introduce one population into the range of another," said the study's author William Godsoe, a postdoctoral fellow at the National Institute for Mathematical and Biological Synthesis (NIMBioS), an NSF-supported math and biology institute at the University of Tennessee, Knoxville.

"But the fact that the two populations live in different environments could be a trivial observation and lead to erroneous conclusions. For example, you might infer that the two populations have different environmental requirements, suggesting that reintroducing one species into the other wouldn't work, when in fact it could," Godsoe said.

The findings have important implications for understanding the relationship between the environmental requirements of a species—its niche—and its geographic distribution.

"There is a growing interest in using data on the geographic distributions of a species. This study clarifies the conditions under which distribution data can mislead us, and in the future, this might help us make better management decisions about a species," Godsoe explained.

The National Institute for Mathematical and Biological Synthesis (NIMBioS) brings together researchers from around the world to collaborate across disciplinary boundaries to investigate solutions to basic and applied problems in the life sciences. NIMBioS is sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture with additional support from The University of Tennessee, Knoxville.

Publication: Godsoe W. 2010. Regional Variation Exaggerates Ecological Divergence in Niche Models. Systematic Biology 59: 298-306. http://sysbio.oxfordjournals.org/cgi/content/abstract/59/3/298

Catherine Crawley | EurekAlert!
Further information:
http://www.nimbios.org

More articles from Life Sciences:

nachricht Breakthrough in designing a better Salmonella vaccine
25.09.2018 | University of California - Davis

nachricht Proof of Concept: Gene therapy for mitochondrial diseases
25.09.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Establishing metastasis

25.09.2018 | Health and Medicine

Artificial intelligence to improve drug combination design & personalized medicine

25.09.2018 | Health and Medicine

Small modulator for big data

25.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>