Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Specialized seeds can really float your boat

04.07.2011
A new artificial surface inspired by floating seeds, which could provide an alternative to the toxic paints currently used to prevent fouling on ship hulls, has been developed by German scientists.

Scientists from the Biomimetics-Innovation-Centre have developed a new anti-fouling surface based on a seed from a species of palm tree. "These plants have seeds which are dispersed by the ocean currents. As it is an advantage for these seeds to remain free of fouling to allow them to disperse further, we guessed they might have specialised surfaces we could mimic," explains Katrin Mühlenbruch, a PhD researcher who is presenting this work at the Society for Experimental Biology Annual Conference in Glasgow on the 4th of July 2011.

The researchers floated seeds from 50 species in the North Sea for 12 weeks. The seeds of 12 species showed no fouling at all. "We then began by examining the micro-structure of the seeds' surfaces, to see if we could translate them into an artificial surface. The seeds we chose to mimic had a hairy-like structure," says Ms. Mühlenbruch. "This structure might be especially good at preventing fouling because the fibres constantly move, preventing marine organisms from finding a place to settle."

Using a silicone base the scientists created an artificial surface similar to the seeds, with fibres covering the surface. Currently the new surface is being trialled by floating it in the sea. "Initial results are quite good," says Ms. Mühlenbruch. "But we still have a long way to go"

Fouling by seaweeds and marine animals is a problem for the shipping industry, resulting in increased fuel costs. Currently the only solutions are highly toxic and environmentally damaging marine paints which are specifically designed to leach biocides to prevent organisms settling on the hull. "Our aim is to provide a new toxin-free and bio-inspired ship coating," says Ms. Mühlenbruch. "This would prevent environmental damage while allowing ships to operate efficiently."

Future work will include analysing the chemical composition of the seeds' surface, to find out whether this adds to their anti-fouling properties.

Daisy Brickhill | EurekAlert!
Further information:
http://www.sebiology.org/

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>