Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special UO microscope captures defects in nanotubes

22.10.2014

University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices

University of Oregon chemists have devised a way to see the internal structures of electronic waves trapped in carbon nanotubes by external electrostatic charges.


George Nazin, a professor of physical chemistry at the University of Oregon, has uncovered traps, or defects, that disrupt electronic waves in nanotubes. The work was done with a scanning tunneling microscope fitted with a closed-cycle cryostat.

Credit: University of Oregon

Carbon nanotubes have been touted as exceptional materials with unique properties that allow for extremely efficient charge and energy transport, with the potential to open the way for new, more efficient types of electronic and photovoltaic devices. However, these traps, or defects, in ultra-thin nanotubes can compromise their effectiveness.

Using a specially built microscope capable of imaging matter at the atomic scale, the researchers were able to visualize traps, which can adversely affect the flow of electrons and elementary energy packets called excitons.

The study, said George V. Nazin, a professor of physical chemistry, modeled the behavior often observed in carbon nanotube-based electronic devices, where electronic traps are induced by stochastic external charges in the immediate vicinity of the nanotubes. The external charges attract and trap electrons propagating through nanotubes.

"Our visualization should be useful for the development of a more accurate picture of electron propagation through nanotubes in real-world applications, where nanotubes are always subjected to external perturbations that potentially may lead to the creation of these traps," he said.

The research, detailed in a paper in the Journal of Physical Chemistry Letters, was done with an ultra-high vacuum scanning tunneling microscope coupled to a closed-cycle cryostat -- a novel device built for use in Nazin's lab. The cryostat allowed Nazin and his co-authors Dmitry A. Kislitsyn and Jason D. Hackley, both doctoral students, to lower the temperature to 20 Kelvin to freeze all nanoscale motion, and visualize the internal structures of nanoscale objects.

The device captured the internal structure of electronic waves trapped in short sections, just several nanometers long, of nanotubes partially suspended above an atomically flat gold surface. The properties of the waves, to a large extent, Nazin said, determine electron transmission through such electronic traps. The propagating electrons have to be in resonance with the localized waves for efficient electronic transmission to occur.

"Amazingly, by finely tuning the energies of propagating electrons, we found that, in addition to these resonance transmission channels, other resonances also are possible, with energies matching those of specific vibrations in carbon nanotubes," he said. "These new transmission channels correspond to 'vibronic' resonances, where trapped electronic waves excite vibrations of carbon atoms forming the electronic trap."

The microscope the team used is detailed separately in a freely available paper (High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat) placed online Oct. 7 by the journal Review of Scientific Instruments.

###

The National Science Foundation (grant DMR-0960211) and a grant from the Oregon Nanoscience and Microtechnologies Institute (ONAMI) supported the construction of the microscope used in the project.

Nazin's co-authors on the paper detailing the microscope are Hackley, Kislitsyn, former UO doctoral student Daniel K. Beaman, now at Intel Corp. in Hillsboro, Oregon, and Stefan Ulrich of RHK Technologies Inc. in Troy, Michigan.

Source: George Nazin, assistant professor of physical chemistry, 541-346-2017, gnazin@uoregon.edu

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

About Nazin: http://chemistry.uoregon.edu/profile/gnazin/

Department of Chemistry and Biochemistry: http://chemistry.uoregon.edu/

JPCL paper: http://pubs.acs.org/doi/abs/10.1021/jz5015967

Paper on microscope: http://scitation.aip.org/content/aip/journal/rsi/85/10/10.1063/1.4897139

Jim Barlow | Eurek Alert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>