Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soybeans a source of valuable chemical

20.12.2012
Rice University scientists turn low-value soy mash into high-value succinic acid
The humble soybean could become an inexpensive new source of a widely used chemical for plastics, textiles, drugs, solvents and as a food additive.

Succinic acid, traditionally drawn from petroleum, is one focus of research by Rice chemists George Bennett and Ka-Yiu San. In 2004, the Department of Energy named succinic acid one of 12 “platform” chemicals that could be produced from sugars by biological means and turned into high-value materials.

Several years ago, Rice patented a process by Bennett and San for the bio-based production of succinic acid that employed genetically modified E. coli bacteria to convert glucose into succinic acid in a way that would be competitive with petroleum-based production.

The new succinate process developed by Bennett, San and Chandresh Thakker and reported recently in Bioresource Technology promises to make even better use of a cheap and plentiful feedstock, primarily the indigestible parts of the soybean.

“We are trying to find a cheaper, renewable raw material to start with so the end product will be more profitable,” said Thakker, a research scientist in the Bennett lab at Rice’s BioScience Research Collaborative and lead author of the study. “The challenge has been to make this biomass process cost-competitive with the petrochemical methods people have been using for many years.”

Bennett feels they have done that with soybean-derived feedstock as an inexpensive source of the carbon that microorganisms digest to produce the desired chemical via fermentation. “A lot of people use plant oils for cooking – corn or soybean or canola — instead of lard, as they did in the old days,” he said. “The oils are among the main products of these seeds. Another product is protein, which is used as a high-quality food.

“What’s left over is indigestible fiber and small carbohydrates,” said Bennett, Rice’s E. Dell Butcher Professor of Biochemistry and Cell Biology. “It’s used in small amounts in certain animal feeds, but overall it’s a very low-value material.”

The Rice researchers are changing that with the help of E. coli bacteria engineered to process soy meal that generally gets discarded. Certain microbes naturally produce succinic acid from such feedstock, but manipulating E. coli’s metabolic pathways (by eliminating pathways that produce other chemicals like ethanol, for instance) can make it far more efficient.

Expanding on their success in producing succinic acid from glucose, the new microbes are engineered to metabolize a variety of sugars found in soybean meal. The theoretical ideal is a 1:1 ratio of feedstock (the extracted sugars) to product, which they feel is achievable by industry. In the lab, under less controlled conditions, they still found the process highly efficient. “We’re demonstrating a very high yield,” Thakker said. “We’re achieving in a flask a non-optimized formation of succinate that is close to the theoretical goal.”

Bennett said his lab has been looking at soybeans for nearly three years. “We’re always interested in low-cost feedstock,” he said. “We were able to get a connection with a soybean group that is very interested in technologies to make better and more profitable use of their crop.

“There’s a fair amount of oilseed residuals available, including cottonseed carbohydrates, that are not used for any high-value product, and we’re in the space of microbial engineering to enable these sorts of materials to be used in a good way,” he said.

Ka-Yiu San is the E.D. Butcher Professor of Bioengineering and a professor of chemical and biomolecular engineering at Rice.

The United Soybean Board and the National Science Foundation supported the research.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: E. coli metabolic pathway soybean succinic acid

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>