Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sophisticated system prevents self-fertilization in petunias

08.01.2015

Plants use genetic mechanisms to prevent inbreeding by recognizing self and non-self pollen. Researchers from the Institute of Evolutionary Biology and Environmental Studies at the University of Zurich have now found evidence that a group of 18 male proteins recognize 40 female proteins between them – in contrast to one-to-one relationships studied to date. The self-recognition mechanism in petunia shows similarities to the immune defense in vertebrates.

The ability of many plant species to recognize and reject one’s own pollen enables them to avoid inbreeding as genetic defects can occur in offspring. Plants recognize their own pollen by a molecular mechanism, known as ‘self-incompatibility’ or ‘SI’. Previous studies revealed that plants and animals have evolved so-called one-to-one self-recognition systems where a single male protein is capable of recognizing a single female protein which can trigger a pollen rejection response.


Petunia flower.

image: Hiroyuki Kakui

A team of plant scientists from the Institute of Evolutionary Biology and Environmental Studies at the University of Zurich headed by Professor Kentaro Shimizu has previously studied the one-to-one SI system in the model plant Arabidopsis.

The researchers at UZH and their collaborators from the Nara Institute in Japan have described a new SI system in petunias that is unlike the previously studied one-to-one self-rejection systems in other plants. Using state-of-the-art sequencing methods, Dr. Timothy Paape at UZH and Dr. Ken-ichi Kubo and colleagues from Japan are the first to demonstrate that the petunia system is highly complex. Petunias, which are members of the Solanaceae family (nightshades), do not use a one male and one female protein recognition system, but rather many proteins are involved in self-recognition process of SI.

In total, 18 male proteins recognize 40 female proteins which are toxic to the plant’s own pollen and thus prevent fertilization. “This self-incompatibility system is the largest one discovered in any plant species,” says Paape. “Our large-scale study allows us to answer many long-standing questions about the evolutionary genetics of RNase based SI because the corresponding genetic diversity in both male and female genes is very different.” The report was featured by the cover picture of the premier issue of Nature Plants.

Complex recognition interplay

The self-incompatibility mechanism shows similarities to disease recognition in animal immune systems, where the organism’s own proteins identify and detoxify harmful pathogens. Proteins that are encoded by self-incompatibility genes (S-genes) are involved in the self-recognition process. As the UZH plant scientists write in their publication in Nature Plants, the exact interplay between the male, termed SLF proteins (S-locus F-box proteins), and female proteins, known as S-RNases (S-ribonucleases) is highly complex in petunias. In petunias, often a single male protein recognizes and detoxifies several female proteins while in other cases a single female protein is recognized by only a few male proteins.

“Complex defense and genetic recognition mechanisms are difficult to study in animals because it is challenging to identify the interacting genes in both the host and the pathogen. The S-RNase based SI system in Petunia shows similar evolutionary patterns to what we expect for immune defense systems in vertebrates, including humans,” says Paape. “The identification of the corresponding male and female SI genes allows us to study how a complex recognition system evolves and is maintained at the genetic level.”

Big plus for breeding

Understanding the genetics of SI is also important in plant breeding. “It might be useful for breeders to obtain yields from vital hybrids while at the same time there can be a risk that no fruit will be produced if fertilization is prevented,” explains Professor Shimizu. The researchers also reported a similar number of male SLF protein types in potatoes and tomatoes, both important crop species also in the nightshade family. A similar S-RNase based SI systems is also present in important fruit trees not in the nightshade family, such as apples and pears. Identifiying the relevant genes that directly affect crop yields could provide useful tools for plant breeders.

Broad support for the study

The study was conducted within the scope of UZH’s University Research Priority Program (URPP) Evolution in Action: From Genomes to Ecosystems, and was supported by Swiss National Science Foundation and by Plant Fellow. The group headed by Professor Kentaro Shimizu performed the comprehensive sequencing of the petunia’s pollen DNA (Rie Shimizu-Inatsugi), the bioinformatics analyses at the Funcaitonal Genomics Center Zurich (Masaomi Hatakeyama) and the evolutionary analyses (Timothy Paape). The team from the Nara Institute of Science and Technology, Japan, was responsible for the experimental and sequence analysis.

Literature:
Ken-ichi Kubo, Timothy Paape, Masaomi Hatakeyama, Tetsuyuki Entani, Akie Takara, Kie Kajihara, Mai Tsukahara, Rie Shimizu-Inatsugi, Kentaro K. Shimizu* and Seiji Takayama*. Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in Petunia. Nature Plants. January 8, 2015. DOI: 10.1038/NPLANTS.2014.5
* Corresponding authors

Contacts:
Dr. Timothy Paape
Institute of Evolutionary Biology and Environmental Studies

University of Zurich
Tel.:+41 44 635 49 86
Email: tim.paape@ieu.uzh.ch

Prof. Kentaro K. Shimizu
Institute of Evolutionary Biology and Environmental Studies

University of Zurich
Tel.: +41 44 635 67 40 or +41 44 635 49 70
Email: kentaro.shimizu@ieu.uzh.ch

Bettina Jakob
Media Relations
University of Zurich
Tel.: +41 44 634 44 39
Email: bettina.jakob@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2015/ausgekluegeltes-system-verhindert-bei-...

Bettina Jakob | Universität Zürich

More articles from Life Sciences:

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

nachricht How do muscles know what time it is?
21.08.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>