Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Songbirds' learning hub in brain offers insight into motor control

21.05.2012
UCSF finding could lead to strategy for treating disorders such as Parkinson's disease

To learn its signature melody, the male songbird uses a trial-and-error process to mimic the song of its father, singing the tune over and over again, hundreds of times a day, making subtle changes in the pitch of the notes.

For the male Bengalese finch, this rigorous training process begins around the age of 40 days and is completed about day 90, just as he becomes sexually mature and ready to use his song to woo females.

To accomplish this feat, the finch's brain must receive and process large quantities of information about its performance and use that data to precisely control the complex vocal actions that allow it to modify the pitch and pattern of its song.

Now, scientists at UCSF have shown that a key brain structure acts as a learning hub, receiving information from other regions of the brain and figuring out how to use that information to improve its song, even when it's not directly controlling the action. These insights may help scientists figure out new ways to treat neurological disorders that impair movement such as Huntington's disease and Parkinson's disease.

The research is reported as an advanced online publication on May 20, 2012 by the journal Nature, and will appear at a later date in the journal's print edition.

Years of research conducted in the lab of Michael Brainard, PhD, an associate professor of physiology at UCSF, has shown that adult finches can keep track of slight differences in the individual "syllables," or notes, they play and hear, and make mental computations that allow them to alter the pitch.

For previous experiments, Brainard and his colleagues developed a training process that induced adult finches to calibrate their song. They created a computer program that could recognize the pitch of every syllable the bird sang. The computer also delivered a sound the birds didn't like—a kind of white noise—at the very moment they uttered a specific note. Within a few hours, the finches learned to alter the pitch of that syllable to avoid hearing the unpleasant sound.

In the new research, the UCSF neuroscientists used their technology to investigate how the learning process is controlled by the brain. A prevailing theory suggests that new learning is controlled by a "smart" brain structure called the basal ganglia, a cluster of interconnected brain regions involved in motor control and learning.

"It's the first place where the brain is putting two and two together," said Jonathan Charlesworth, a recent graduate of UCSF's neuroscience PhD program and the first author of the new paper. "If you remove the basal ganglia in a bird that hasn't yet learned to sing, it will never learn to do so."

Once a basic, frequently repeated skill such as typing, singing the same song or shooting a basketball from the free-throw line is learned, the theory suggests, control of that activity is carried out by the motor pathway, the part of the nervous system that transmits signals from the brain to muscles. But for the basic routine to change—for a player to shoot from another spot on the basketball court or a bird to sing at a different pitch—the basal ganglia must again get involved, providing feedback that allows learning based on trial and error, the theory suggests.

What remained unclear is what makes the basal ganglia so "smart" and enables them to support such detailed trial-and-error learning. Was it something to do with their structure? Or were they getting information from elsewhere?

The scientists sought to answer this question by blocking the output of a key basal ganglia circuit while training male finches to alter their song using the white-noise blasts. As long as the basal ganglia were kept from sending signals to the motor pathway, the finches didn't change their tune or show signs of learning. But when Brainard's team stopped blocking the basal ganglia, something surprising happened: the finches immediately changed the pitch of their song, with no additional practice.

"It's as if a golfer went to the driving range and was terrible, hitting the ball into the trees all day and not getting any better," said Charlesworth. "Then, at the end of the day, you throw a switch and all of a sudden you're hitting the fairway like you're Tiger Woods."

Normally, you'd expect improvement in skill performance like this to take time as the basal ganglia evaluates information, makes changes and gets new feedback, Brainard said.

"The surprise here is that the basal ganglia can pay attention, observe what other motor structures are doing and get information even when they aren't involved in motor control," Brainard said. "They covertly learned how to improve skill performance and this explains how they did it."

These findings suggest that the basal ganglia's "smartness" is due in large part to the steady flow of information they receive about the commands of other motor structures. It also portrays the basal ganglia as far more versatile than previously understood, able to learn how to calibrate fine-motor skills by acting as a specialized hub that receives information from various parts of the brain and responds to that information with new directives.

The findings also support the notion that problems in the basal ganglia circuit's ability to receive information and learn from it may help trigger the movement disorders that are symptoms of Huntington's and Parkinson's, Brainard said.

Timothy Warren, another PhD graduate working in Brainard's lab, was the paper's third author.

Funding support for the research came from the National Institutes of Health and the National Science Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jennifer O'Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>