Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Songbird Brains

29.06.2009
When a zebra finch hears a new song from a member of its own species, the experience changes gene expression in its brain in unexpected ways, researchers report. The sequential switching on and off of thousands of genes after a bird hears a new tune offers a new picture of memory in the songbird brain.

The finding, detailed this month in the Proceedings of the National Academy of Sciences, was a surprise, said principal investigator David Clayton, a professor of cell and developmental biology at the University of Illinois.

He and his colleagues had not expected to see so many genes involved, and thought that any changes in gene activity after a bird heard a new song would quickly dissipate.

The new experiments uncovered three distinct profiles of gene expression in the brain. One is typical of a bird sitting alone in silence. A second profile appears quickly just after a bird hears a recorded song – but only if the song is new to the bird. A third profile then emerges 24 hours later, after the song has become familiar.

“I can tell you whether the bird has heard a particular song before or not just by looking at the molecular assay,” Clayton said.

In the study, each bird was kept in quiet isolation overnight before it heard a recording of a new song. The recording was then repeated every 10 seconds for up to three hours.

“The most important thing in its whole life is the sound of another bird of its species singing,” Clayton said.

“And what we found is that 24 hours after the experience its brain is still trying to make sense of what it heard.”

The new study took a broad snapshot of gene activity in the brain. Using DNA microarray analysis, the researchers measured changes in levels of messenger RNAs in the auditory forebrain of finches exposed to a new song. These mRNAs are templates that allow the cell to translate individual genes into the proteins that do the work of the cells. Any surge or drop in the number of mRNAs in brain cells after a stimulus offers clues to how the brain is responding.

Some genes were upregulated within 30 minutes of exposure to a new song, the researchers found, and these included a lot of transcription factors that modulate the activity of other genes. Many other genes were downregulated, including those that code for ion channel proteins, which allow ions to flow into the cell. This could be one way that the brain dampens its response to a powerful stimulus, protecting itself from too much disturbance, Clayton said.

“Whenever something unexpected and different comes along, such as the song of a new bird in the neighborhood, it’s going to deform the listening bird’s neural network,” Clayton said. “And so the system has to basically absorb some of that, make some changes and not be overwhelmed by it. If you push the system around too much, cells die.”

On the other hand, if the system were completely resistant to disturbance, no memory would form, he said.

Twenty-four hours after the initial stimulus, the pattern of activated genes was entirely different from that of the initial response, regardless of whether the bird heard the song again on day two or not, Clayton said. Those genes that were originally upregulated or downregulated had returned to baseline, and a new network of genes was engaged. A major focus of this new network appears to be the regulation of energy metabolism. This suggests a lot is still going on in the brain, Clayton said.

“It’s like we’ve lifted the hood and we’re seeing that these things are just chugging away,” Clayton said. “The bird had this one day of experience and a day later the brain is in a different state. It’s still in high gear. It’s still processing stuff. It’s still reverberating and echoing.”

Clayton is an affiliate of the Institute for Genomic Biology and of the Beckman Institute for Advanced Science and Technology at the University of Illinois.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>