Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First uses of new solar energy technology: Killing germs on medical, dental instruments

09.09.2013
A revolutionary new solar energy technology that turns water into steam without boiling the entire container of water has become the basis for new devices to sanitize medical and dental instruments and human waste in developing countries, scientists said here today.

Prototypes of the devices, which need no electricity or fuel, were the topic of one of the keynote addresses at the opening of the 246th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society. The meeting, which features almost 7,000 reports on new advances in science and other topics, continues through Thursday in the Indiana Convention Center and downtown hotels.

Naomi Halas, D.Sc., pointed out that almost 2 billion people live in areas of the world without a regular supply of electricity. That electricity is key to using machines called autoclaves, which produce scorching-hot steam to sterilize medical and dental instruments. Without that basic machine, doctors must rely on chemicals, which can be costly and difficult to transport, to prevent the spread of germs and disease from medical and dental instruments.

"We have developed a solution, our solar steam technology," Halas said. She is with Rice University. "It is completely off-grid, uses sunlight as the energy source, is not that large, kills disease-causing microbes effectively and relatively quickly and is easy to operate. This is an incredibly promising technology."

Halas and colleagues have prototypes of two solar steam machines. One is the autoclave for sterilizing medical and dental instruments. The second is an autoclave for disinfecting human and animal wastes, which are another major source of disease transmission in developing countries and other resource-limited areas. The technology could be expanded to provide steam for direct use in purifying dirty or salty water for drinking and cooking — with the solar-generated steam simply allowed to condense into pure distilled water. Possibilities also exist for adapting the technology to produce steam to spin small electric turbines to generate electricity.

Their tests showed that the prototype autoclaves produced steam at temperatures ranging from 239 to 270 degrees Fahrenheit. Steam production adequate for sterilization began within about 5 minutes. It continued for periods of time long enough to sterilize liquid and solid materials placed inside the device, consistent with U.S. Food and Drug Administration sterilization guidelines. The heat and pressure produced by the steam was great enough to kill the most heat-resistant living microbes, and also viruses and the tough spores that microbes form to survive hostile environmental conditions.

The autoclaves are the first practical applications of a new solar energy technology described earlier in 2012 in ACS Nano, one of the ACS' more than 40 peer-reviewed scientific journals. Metallic nanoparticles — bits of material so small that hundreds would fit inside the period at the end of this sentence — go into a container of water. Sunlight focused into the water quickly heats the nanoparticles, which scientists are terming "nanoheaters." A layer of steam forms on the nanoheaters and buoys them up to the water's surface. They release the steam and sink back down into the water to repeat the process.

"Nanoheaters generate steam at a remarkably high efficiency," Halas said. "More than 80 percent of the energy they absorb from sunlight goes into production of steam. In the conventional production of steam, you would have to heat the entire container of water until it boils, with the bubbles rising to the top to release steam. With nanoheaters, less than 20 percent of the energy heats the neighboring liquid."

The prototype autoclaves consist of a dish-like mirror that focuses sunlight into a container of water with the nanoheaters.

A video on the solar heater technology is available here.

Halas recently formed a company that is working on moving the devices from the prototype stage to commercial products. She and her collaborators are seeking ways to make them more rugged and at a more reasonable cost. They are also exploring even more applications for the technology.

A press conference on this topic will be held Sunday, Sept. 8, at 1 p.m. in the ACS Press Center, Room 211, in the Indiana Convention Center. Reporters can attend in person or access live audio and video of the event and ask questions at http://www.ustream.tv/channel/acslive.

Halas acknowledged funding from the Bill and Melinda Gates Foundation.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>