Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil crusts emit nitrogen oxides and nitrous acid

01.12.2015

A Mainz study shows that biological soil crusts release large quantities of reactive nitrogen compounds

For a long time now, researchers have been racking their brains over the large quantities of reactive nitrogen compounds observed in arid regions after periods of rainfall without being able to identify the source. A study recently published in the scientific journal entitled “Proceedings of the National Academy of Sciences of the United States of America” (PNAS) is now bringing light into the darkness. Bettina Weber and her colleagues from the Max Planck Institute for Chemistry in Mainz, the Max Planck Institute for Biogeochemistry in Jena and the Biodiversity and Climate Research Center in Frankfurt (BiK-F), were able to prove that biological soil crusts in arid regions emit nitrogen monoxide (NO) and nitrous acid (HONO) when moistened. The two reactive nitrogen compounds play a key role in the production of ozone and OH radicals, which control the atmosphere’s oxidation and self-cleaning properties.


Biological soil crust dominated by lichens and cyanobacteria in the Succulent Karoo, South Africa.

Picture: Bettina Weber


Overview over the Succulent Karoo in the region around Soebatsfontein, which is characterized by a dense coverage of biological soil crusts.

Picture: Bettina Weber

For several years, cryptogam layers composed of soil crusts, among other things, have been causing a stir in earth system and climate research. Indeed, in 2012, a team of researchers led by the Max Planck Institute for Chemistry were able to show that soil crusts are responsible for around half of the biological nitrogen fixation to the Earth’s surface. Bettina Weber and her colleagues took up the question of what happens to the large quantities of fixed nitrogen in the subsequent materials cycle. They have now managed to find their first answer and uncover a hitherto unknown release process for reactive nitrogen compounds.

“Our investigations have shown that biological soil crusts in arid regions release NO and HONO, whereby the quantity corresponds to around 20% of the amount of nitrogen oxides released globally through soils,” explains Bettina Weber, Group Leader in the Multiphase Chemistry Department at the Max Planck Institute for Chemistry, before adding: “While the release of nitrogen monoxide has already been demonstrated in other studies, we have now been able to prove that nitrous acid is also formed and released by biological soil crusts.”

It had previously been assumed that the release of nitrogen monoxide was due to abiotic processes. However, Bettina Weber’s team has now clearly proven that the organisms present in the soil crusts are responsible for the release.

Small-scale power plants in barren regions

“Biological soil crusts are like small-scale power plants,” explains Bettina Weber enthusiastically. “These layers, which are only a few millimeters thick, conceal a concentrate of organisms consisting of producers, consumers and decomposers and thus represent one of the smallest ecosystems in the world. This is where many processes important for the earth system happen in the smallest of spaces.” As the study shows, biological soil crusts in arid regions clearly play a key role in releasing atmospherically reactive nitrogen compounds. “Precipitation plays a major role, since moisture triggers the metabolic process in biological soil crusts,” adds Hang Su, who is also Group Leader in the Multiphase Chemistry Department at the Max Planck Institute for Chemistry and was involved in analyzing the data as a modeler.

Additionally, a team of researchers was recently able to prove, with involvement of the Max Planck Institute for Chemistry, that cryptogam layers also release nitrous oxide and negligible quantities of methane into the atmosphere. “Up until now, cryptogam layers were not included in global climate models. Given the number of new findings concerning how highly influential they are on biogeochemical cycle processes, they can no longer be left out,” summarizes Hang Su.

Biological soil crusts make up around one-ninth of the Earth’s surface. Since it can be assumed that climate change will continue to modify both the occurrence of soil crusts and the distribution and frequency of precipitation, the surface covers should be further examined and the results incorporated into computer models of the global materials cycles.

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/soil-crusts-emit-nitrogen-oxid...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>