How soft corals defy their environment

Calcium carbonate is a salt for all seasons. It turns up not only in marble, but also in biogenic sediments such as limestone and coral reefs – and even in pearls. The compound exists in two major crystalline forms, as calcite or aragonite. However, it is not clear what determines which variant an organism will exploit under conditions in which both forms can precipitate.

A team of researchers led by LMU geobiologist Dr. Azizur Rahman, who is also a Research Fellow of the Alexander von Humboldt Foundation, has now answered this question, in collaboration with colleagues based at the University of the Ryukyu Islands in Japan. Together, the scientists have shown that, in the soft coral species Lobophytum crissum, a secreted, extracellular protein known as ECMP-67 is the decisive factor that results in the precipitation of calcite, irrespective of the chemical conditions prevailing in the surrounding seawater. “Over the course of Earth’s history, and most probably depending on the relative amounts of dissolved magnesium and calcium ions, either calcite or aragonite has dominated in the world’s oceans,” says Professor Gert Wörheide, one of the authors of the new study.

Current conditions favor the formation of aragonite, and many stony corals build their skeletons exclusively from this material. However, thanks to ECMP-67, Lobophytum crassum can still produce calcite in an aragonite sea. “We have also been able to show how the extracellular protein ECMP-67 contributes to the production of calcite at the molecular level,” says Rahman. “These findings should also allow us to elucidate the crystal structure of calcite in natural environments.” The study was funded by the Alexander von Humboldt Foundation and the Japanese Society for the Promotion of Sciences. (suwe/PH)

Publication:
Calcite formation in soft coral sclerites is determined by a single reactive extracellular protein
Azizur Rahman, Tamotsu Oomori and Gert Wörheide
Journal of Biological Chemistry 286: 31638-31649; 2 September 2011
Doi 10.1074/jbc.M109.070185
Contact:
Dr. Azizur Rahman
Department of Earth and Environmental Sciences, Paleontology and Geobiology
LMU Munich
Phone: +49 89 / 2180 6711
Email: a.rahman@lrz.uni-muenchen.de

Media Contact

Dr. Kathrin Bilgeri EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors