Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Socially isolated rats are more vulnerable to addiction, report researchers

24.01.2013
The effects of social isolation persist even after the rats are reintroduced into the community of other rats

Rats that are socially isolated during a critical period of adolescence are more vulnerable to addiction to amphetamine and alcohol, found researchers at The University of Texas at Austin. Amphetamine addiction is also harder to extinguish in the socially isolated rats.

These effects, which are described this week in the journal Neuron, persist even after the rats are reintroduced into the community of other rats.

"Basically the animals become more manipulatable," said Hitoshi Morikawa, associate professor of neurobiology in the College of Natural Sciences. "They're more sensitive to reward, and once conditioned the conditioning takes longer to extinguish. We've been able to observe this at both the behavioral and neuronal level."

Morikawa said the negative effects of social isolation during adolescence have been well documented when it comes to traits such as anxiety, aggression, cognitive rigidity and spatial learning. What wasn't clear until now is how social isolation affects the specific kind of behavior and brain activity that has to do with addiction.

"Isolated animals have a more aggressive profile," said Leslie Whitaker, a former doctoral student in Morikawa's lab and now a researcher at the National Institute on Drug Abuse. "They are more anxious. Put them in an open field and they freeze more. We also know that those areas of the brain that are more involved in conscious memory are impaired. But the kind of memory involved in addiction isn't conscious memory. It's an unconscious preference for the place in which you got the reward. You keep coming back to it without even knowing why. That kind of memory is enhanced by the isolation."

The rats in the study were isolated from their peers for about a month from 21 days of age. That period is comparable with early-to-middle adolescence in humans. They were then tested to see how they responded to different levels of exposure to amphetamine and alcohol.

The results were striking, said Mickaël Degoulet, a postdoctoral researcher in Morikawa's lab. The isolated rats were much quicker to form a preference for the small, distinctive box in which they received amphetamine or alcohol than were the never-isolated control group. Nearly all the isolated rats showed a preference after just one exposure to either drug. The control rats only became conditioned after repeated exposures.

Morikawa said that this kind of preference for the environmental context in which the reward was received provides researchers with a more useful way of understanding addiction than seeing it as a desire for more of the addictive substance.

"When you drink or take addictive drugs, that triggers the release of dopamine," he said. "People commonly think of dopamine as a happy transmitter or a pleasure transmitter, which may or may not be true, but it is becoming increasingly clear that it is also a learning transmitter. It strengthens those synapses that are active when dopamine is released. It tells our brain that what we're doing at that moment is rewarding and thus worth repeating."

In an important sense, says Morikawa, you don't become addicted to the experience of pleasure or relief but to the constellation of environmental, behavioral and physiological cues that are reinforced when the substance triggers the release of dopamine in the brain.

Morikawa and Whitaker have also been able to document these changes at the neuronal level. Social isolation primes dopamine neurons in the rats' brain to quickly learn to generate spikes in response to inputs from other brain areas. So dopamine neurons will learn to respond to the context more quickly.

If the control, group-housed rats are given enough repeated exposure to amphetamine, they eventually achieve the same degree of addiction as the socially isolated rats. Even from this point of comparable addiction, however, there are differences. It takes longer for the socially isolated rats to kick the addiction to amphetamine when they're exposed to the same extinction protocols. (They spend time in the same environments, but amphetamine is no longer available.)

"So the social isolation leads to addiction more quickly, and it's harder to extinguish," said Whitaker.

Whitaker said that the implications of these findings for addiction in humans are obvious. There is a rich literature that documents the negative effects of social isolation in humans, as well as a great deal of evidence that addiction in rats and humans is functionally similar at the neurological level.

"It's not a one-to-one correlation, but there are socially impoverished human environments," she said. "There are children who are neglected, who have less social input. It's reasonable to make guesses about what the impact of that is going to be."

Morikawa points out that their findings may also have implications for how social isolation during adolescence affects conditionability when it comes to other kinds of rewards.

"We think that maybe what's happening is that the brain reacts to the impoverished environment, to a lack of opportunities to be reinforced by rewarding stimuli, by increasing its sensitivity to reward-based conditioning," said Morikawa. "The deprived brain may be overinterpreting any reward it encounters. And if that's the case, it's likely that you are more conditionable not only to drugs but to any sort of reward, including food reward. One interesting possibility is that it might also make adolescents more prone to food 'addiction,' and then to obesity."

Daniel Oppenheimer | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>