Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sociability may depend upon brain cells generated in adolescence

05.10.2011
Mice become profoundly anti-social when the creation of new brain cells is interrupted in adolescence, a surprising finding that may help researchers understand schizophrenia and other mental disorders, Yale researchers report.

When the same process is interrupted in adults, no such behavioral changes were noted, according to research published in the Oct. 4 issue of the journal Neuroscience.

"This has important implications in understanding social development at the molecular level," said Arie Kaffman, assistant professor of psychiatry and senior author of the study.

Scientists have known for quite some time that new brain cells are continually generated in specific brain regions after birth. This process, called neurogenesis, occurs at a significantly greater rate during childhood and adolescence than in adulthood, yet most research has focused upon the function of these neurons in older brains.

The Yale team decided to explore the function of these new brain cells in mice of different ages. Normal adult mice tend to spend a lot of time exploring and interacting with unfamiliar mice. However, adult mice that had neurogenesis blocked during adolescence showed no interest in exploring other adult mice and even evaded attempts made by other mice to engage in social behavior.

"These mice acted like they did not recognize other mice as mice," Kaffman said.

Blocking adult neurogenesis had no effect on social behavior, suggesting that brain cells generated during adolescence make a very different contribution to brain function and behavior in adulthood, note the scientists.

Intriguingly, schizophrenics have a deficit in generating new neurons in the hippocampus, one of the brain areas where new neurons are created. Given that symptoms of schizophrenia first emerge in adolescence, it is possible that deficits in generating new neurons during adolescence or even in childhood holds new insights into the development of some of the social and cognitive deficits seen in this illness, Kaffman said.

Other Yale authors include Lan Wei and Ronald S. Duman.

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: Sociability brain area brain cell new brain cells social behavior

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>