Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Snout dated: Slow-evolving elephant shark offers new insights into human physiology


Using different steroid hormones to activate a hormone receptor in a cartilaginous fish provides insights into origins and later evolution of crucial mechanism for survival of vertebrates living on land

The mineralocortoid receptor (MR) regulates water and sodium transport throughout cells and tissues, which is critical for controlling blood pressure and so, not surprisingly, the MR is common to all vertebrate animals. Aldosterone, which is a physiological steroid for land vertebrate MRs, evolved in lungfish (forerunners of land vertebrates), suggesting that the evolution of aldosterone was important in the conquest of land by preventing dehydration in animals living out of water.

An elephant shark, characterized by its distinctive snout.

Photo credit: Susumu Hyodo, University of Tokyo

And yet, aldosterone is absent in sharks and ray-finned fish, prompting the question of which steroids activate the MR in them, and the roles played by these steroids in humans.

In an unusual study, an international team of scientists from Japan, Singapore and the United States, led by Michael E. Baker, PhD, research professor at University of California San Diego School of Medicine, report that compared to humans, a different set of steroid hormones activate MR in elephant sharks, a species of cartilaginous fish that represents the oldest surviving group of jawed vertebrates.

The discovery, published in the June 4, 2019 issue of Science Signaling, not only highlights another evolutionary change as vertebrates transitioned from water to land, but suggests that MR may have other, critical roles in maintaining human health.

"Although the MR is traditionally thought of as a transcription factor that's important in regulating electrolyte transport in kidneys, it is becoming clear that the MR has physiological actions in non-traditional organs, including the brain and heart," said Baker.

"Our findings suggest that the activity of the MR in non-traditional organs is ancient and, indeed, evolved in a basal jawed vertebrate. Studies with elephant sharks support other research that shows the physiology of steroid hormones like aldosterone, cortisol and progesterone in other non-traditional tissues, such as ovary and testis, also may be important in human health."

The elephant shark (Callorhinchus milii) is an uncommon animal model. Known by several names, such as ghost shark, elephant fish and silver trumpeter, the species is found in waters off southern Australia. The smooth-skinned fish grow to a maximum size of four feet and pose no threat to humans. Their distinctive hoe-shaped, proboscis-like snout is used to detect prey, primarily shellfish and bottom-dwelling invertebrates, through movement and weak electrical fields.

Elephant sharks possess another unusual feature: They have the slowest evolving genome of all known vertebrates, "which makes them ideal for providing insights into how MR evolved in bony vertebrates, including humans," said the study's first author Yoshinao Katsu, PhD, assistant professor of biological science at Hokkaido University in Japan.

Baker, Katsu and colleagues in Singapore, Japan and Minnesota found that elephant shark MR responds to the same physiological corticosteroids (aldosterone, cortisol, corticosterone and 11-deoxycorticosterone) that activate MR in humans and other mammals. But another major steroid hormone -- progesterone -- triggers shark MR but does nothing in humans, rats, frogs or alligators.

"Because the synthesis of progesterone synthesis is simpler than either aldosterone, cortisol, corticosterone or 11-deoxycorticosterone, we propose that progesterone was an ancestral, maybe the ancestral steroid for MR," said Katsu.

As such, said the authors, the odd-looking elephant shark and its compact, slow-evolving genome provide a different, comparative way to look at and understand the evolution of humans and other vertebrates at the point when they became terrestrial creatures.

"Elephant shark proteins are a window into the past," said Baker.


Co-authors include: Satomi Kohno, St. Cloud State University, Minn.; Kaori Oka, Xiaozhi Lin and Sumika Otake, Hokkaido University, Japan; Nisha E. Pillai and Byrappa Venkatesh, Institute for Molecular and Cell Biology, Singapore; and Wataru Takai and Susumu Hyodo, University of Tokyo.

Media Contact

Scott LaFee


Scott LaFee | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

Science & Research
Overview of more VideoLinks >>>