Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian researchers find differences between Galapagos and mainland frigatebirds

29.09.2010
Although the magnificent frigatebird may be the least likely animal on the Galapagos Islands to be unique to the area, it turns out the Galapagos population of this tropical seabird may be its own genetically distinct species warranting a new conservation status, according to a paper by researchers at the Smithsonian Conservation Biology Institute, the Smithsonian's National Museum of Natural History and the University of Missouri-St. Louis published last week in the scientific journal Proceedings of the Royal Society B.

The Galapagos Islands, which once served as a scientific laboratory for Charles Darwin, boast a number of unique plant and animal species, from tortoises to iguanas to penguins. Magnificent frigatebirds, however, can fly hundreds of kilometers across open ocean, suggesting that their gene flow should be widespread and their genetic make-up should be identical to those of the magnificent frigatebirds on the mainland coast of the Americas.

Even Darwin predicted that most Galapagos seabirds would not be very different from their mainland counterparts. But researchers at SCBI conducted three different kinds of genetics tests and all yielded the same result—the Galapagos seabirds have been genetically different from the magnificent frigatebirds elsewhere for more than half a million years.

"This was such a surprise," said Frank Hailer, a postdoctoral research associate at SCBI and lead author of the paper. "It's a great testimony to just how unique the fauna and flora of the Galapagos are. Even something that is so well-adapted to flying over open oceans is isolated there."

Scientists began the research to determine whether the magnificent frigatebird on the Galapagos was more similar genetically to the magnificent frigatebirds on the Caribbean side or the Pacific side of the islands. Using frigatebird samples from Betty Anne Schreiber at the National Museum of Natural History, Iris Levin and Patricia Parker at the University of Missouri-St. Louis and those they collected in the field, SCBI researchers determined that the Galapagos version differ not only genetically, but also morphologically.

Now scientists are left with a number of questions: Are the genetics of the magnificent frigatebird on the Galapagos different enough to classify it as a distinct species? And what, exactly, accounts for the genetic and morphological differences when the seabirds can travel far and wide and therefore should not be isolated to one area to reproduce? SCBI and National Museum of Natural History researchers plan to collaborate with others in the field to find the answers.

What is clear, however, is that this small population of genetically unique magnificent frigatebirds is a vulnerable population. Any catastrophic event or threats by humans could wipe out the approximate 2,000 magnificent frigatebirds that nest on the Galapagos Islands.

"The magnificent frigatebirds on the Galapagos are a unique evolutionarily significant unit, and if the Galapagos population did go extinct, the area will not likely be recolonized rapidly by mainland birds," said Robert Fleischer, head of SCBI's Center for Conservation and Evolutionary Genetics and one of the paper's co-authors. "This emphasizes the importance of protecting this small population of birds there."

Magnificent frigatebirds are currently considered of least concern by the International Union for Conservation of Nature, but the Proceedings of the Royal Society B paper recommends that, because of the genetic uniqueness of those on the Galapagos, this status be revisited.

Authors of the paper: Frank Hailer, Smithsonian's National Zoo; E. A. Schreiber, Smithsonian's National Museum of Natural History; Joshua Miller, Smithsonian's National Zoo; Iris Levin, University of Missouri-St. Louis; Patricia Parker, University of Missouri-St. Louis; Terry Chesser, U.S. Geological Survey and Smithsonian's National Museum of Natural History; and Robert Fleischer, Smithsonian's National Zoo.

Lindsay Renick Mayer | EurekAlert!
Further information:
http://www.si.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>