Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart gas sensors for better chemical detection

02.05.2012
Portable gas sensors can allow you to search for explosives, diagnose medical conditions through a patient's breath, and decide whether it's safe to stay in a mine.

These devices do all this by identifying and measuring airborne chemicals, and a new, more sensitive, smart model is under development at the University of Michigan. The smart sensor could detect chemical weapon vapors or indicators of disease better than the current design. It also consumes less power, crucial for stretching battery life down a mineshaft or in isolated clinics.

In the gold standard method of gas detection, chemicals are separated before they are measured, said Xudong "Sherman" Fan, a professor in the Department of Biomedical Engineering.

"In a vapor mixture, it's very difficult to tell chemicals apart," he said.

The main advance of the sensor under development by Fan and his colleagues at U-M and the University of Missouri, Columbia, is a better approach to divvying up the chemicals. The researchers have demonstrated their concept on a table-top set-up, and they hope to produce a hand-held device in the future.

You can think of the different chemical vapors as tiny clouds, all overlapping in the original gas. In most gas sensors today, researchers separate the chemicals into smaller clouds by sending the gas through two tubes in sequence. A polymer coating on the inside of the first tube slows down heavier molecules, roughly separating the chemicals according to weight. The time it takes to get through the tube is the first clue to a chemical's identity, Fan explained.

A pump and compressor collect gas from the first tube and then send it into the second tube at regular intervals. The second tube is typically coated with polar polymers, which are positively charged at one end and negatively charged at the other. This coating slows down polar gas molecules, allowing the non-polar molecules to pass through more quickly. With this second clue, the researchers can identify the chemicals in the gas.

The decision-maker added by Fan's group consists of a detector and computer that watch for the beginnings and ends of partially separated chemical clouds. Under its direction, the compressor only runs when there is a complete cloud to send through. In addition to consuming one-tenth to one-hundredth of the energy expended by the compressor in typical systems, this approach makes data analysis easier by keeping all molecules of one type together, said Jing Liu, a graduate student in Fan's group.

"It can save a lot of power, so our system can be used in remote areas," she said.

Because no gas can enter the second tube until the previous chunk has gone all the way through, the smart system takes up to twice as long to fully analyze the gas. However, adding alternative tubes for the second leg of the journey can get the system up to speed. Then, the decision-maker acts like a telephone operator.

"It can tell if one tube is 'busy' and send the gas to another line," Fan said.

This way, the device never stops the flow of the gas from the first tube. These second tubes can be customized for separating specific gasses, made to various lengths and with different coatings. As an example, Fan suggested that a dedicated tube for sensing specific molecules could serve as a "hotline."

"If we have suspicion that there are chemical weapon vapors, then we send that particular batch of molecules to this hotline," said Fan. "It could identify them with really high sensitivity."

Fan's team will study these sophisticated setups in the future. For now, they have proven that their decision-maker can distribute gas between two secondary tubes. Their smart sensors fully identified gasses containing up to 20 different chemicals, as well as compounds emitted by plants.

The paper is titled "Adaptive two-dimensional micro-gas chromatography" and it appears in today's issue of the journal Analytical Chemistry. This work was supported by the National Science Foundation (IOS 0946735) and the Center for Wireless Integrated Microsensing and Systems at the University of Michigan.

Related links:

Fan Lab: http://www.bme.umich.edu/labs/fanlab/index.php
Journal URL: http://pubs.acs.org/doi/abs/10.1021/ac300588z

Katherine McAlpine | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>