Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The smallest predators in the Baltic Sea

09.08.2012
Bacteria-consuming unicellar organisms, the heterotrophic flagellates, are known to be the smallest predators in the oceans. To shed light onto the vastly unresolved biodiversity of the Baltic Sea's tiniest hunters – researchers of the IOW did just the opposite: they turned off the light!

A better understanding of ecosystem functioning requires a close examination of the complex interactions between organisms that constitute the food web of a given ecosystem. But this leads to a fundamental question: Who eats whom? Who is the predator, who is the prey?

Under water, the classical interactions between predator and prey play out on a miniature scale: between unicellular microorganisms. Unquestionably, the most successful predators acting at the very base of the marine trophic pyramid are the so-called heterotrophic flagellates – tiny unicellular organisms that are propelled by whip-like organelles (flagella) and which prey on even smaller bacteria.

Predacious flagellates have long (since the 1980s) been known to massively impact bacterial growth, through grazing pressure, and to be a relevant link between bacterial production and higher multicellular organisms such as zooplankton or fish. Yet, many questions remain to be answered, including: Who are the key players in the hunt for bacteria? Which species comprise the natural assemblage of heterotrophic flagellates?

Marine scientists associated with the team of Prof. Dr. Klaus Jürgens, from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW), and his colleagues from the Institut de Ciències del Mar (ICM) in Barcelona are the first to successfully obtain deep insight into the largely unknown species diversity of predatory flagellates in the Baltic Sea, identifying a range of novel and undescribed species. “Flagellates belong to the domain of protists and as they are only between 2 and 20 µm in size single species are hardly distinguishable under the microscope”, says Felix Weber, the first author of the study. “For that reason, molecular methods have been applied for over a decade to investigate natural protist assemblages and to describe the species inventory of various aquatic systems.”

However, such methods, which are based on the characterization of certain genes (18S ribosomal RNA), lead to the detection of bacterivorous protists as well as their photosynthetically active counterparts. “This implies a fundamental drawback of commonly used molecular methods since a protist detected in the water sample exhibits its ‘genetic identity’ whereas the functional role played by the protist in the ecosystem at the time of sampling remains concealed, i.e., whether it is a predator or synthesizes its biomass through the power of sunlight, just as green land plants do”, explains Felix Weber.
To avoid this problem, the team came up with a simple solution: The water sample was left to stand for a while in the dark. The underlying trick was that these conditions acted as a “functional filter” on the protistan community: light-dependent phototrophic flagellates declined in number whereas bacteria-consuming species increased in abundance. “After one week of incubation, the ratio of phototrophic to heterotrophic organisms reached a value favourable for the characterization of the tiny predators on the basis of their 18S rRNA genes,” states Weber. “Especially by applying a molecular comparison of the community composition at the start and end of the incubation, we were able to draw conclusions about which taxa developed in the dark and thus are very likely bacterial consumers.”

Thus, the scientists identified various as-yet-undescribed flagellate taxa and simultaneously addressed their ecological role. “In the Baltic Sea, prey – in this case meaning bacteria - have already been subject to intense studies,” says Klaus Jürgens. “But this most recent investigation was the first to gain important insights into the biodiversity of the smallest predators in the Baltic Sea – the heterotrophic flagellates.”

Furthermore, according to the results of the IOW and ICM scientists, the community composition of the small predators in the brackish southern Baltic Sea very closely resembles a fully marine system such as the North Sea. The crucial question, whether the predator composition changes within the steep salinity gradient of the Baltic Sea, similar to the observed shifts of other organisms in the Baltic, will be the subject of further research.

The results were published in the article:

Weber F., del Campo J., Wylezich C., Massana R. & Jürgens K. (2012) Unveiling Trophic Functions of Uncultured Protist Taxa by Incubation Experiments in the Brackish Baltic Sea. PloS ONE, DOI:10.1371/journal-pone.0041970.

This study was partly funded by the German Academic Exchange Service (DAAD), (F2100GKSD), http://www.daad.de, and the German Science Foundation (DFG) (JU 367/11-1).

Contact:

Felix Weber, Biological Oceanography, IOW
(Tel.: 0381 / 5197 252, Email: felix.weber@io-warnemuende.de)

Dr. Barbara Hentzsch, Public Relation, IOW
(Tel.: 0381 / 5197 102, Email: barbara.hentzsch@io-warnemuende.de)

Nils Ehrenberg, Public Relation, IOW
(Tel.: 0381 / 5197 106, Email: nils.ehrenberg@io-warnemuende.de)

The IOW is a member of the Leibniz Association, which currently includes 86 research institutes and a scientific infrastructure for research. The Leibniz Institutes' fields range from the natural sciences, engineering and environmental sciences, business, social sciences and space sciences to the humanities. Federal and state governments together support the Institute. In total, the Leibniz Institute has 16 800 employees, of which approximately are 7,800 scientists, and of those 3300 young scientists. The total budget of the Institute is more than 1.4 billion Euros. Third-party funds amount to approximately € 330 million per year.

Dr. Barbara Hentzsch | idw
Further information:
http://www.leibniz-gemeinschaft.de
http://www.daad.de

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>