Small synaptic impulses are the key to rapid non-linear information processing in the brain

A novel theoretical framework for mathematically modeling nerve cells has illuminated for the first time how small synaptic impulses enable non-linear information processing in the brain. Reported in PLoS Computational Biology, the findings offer fundamental insights relevant to a wide range of biological, physical and technical systems.

In the field of neuroscience, neurons are known to communicate via so-called gaction potentialsh, brief impulses which cause a cellfs membrane potential to rise and fall. Only when many such impulses together exceed a threshold value does the neuron gfireh, releasing its action potential to target neurons. How neurons transfer action potentials from inputs into outputs determines which elementary operations they are able to perform, and at what rate.

With their latest work, researchers at the RIKEN Brain Science Institute and Bernstein Center for Computational Neuroscience set out to resolve contradictory findings uncovered earlier regarding this input-output relationship. At issue was the conventional theory of spiking neuronal networks, which approximates impulses in the limit where they become vanishingly tiny and infinitely numerous, limiting the capabilities of individual neurons to simple addition of inputs.

Using a newly-developed high-precision method for simulating nonlinear neuron models (see references), the team had previously uncovered contradictions in this theory. To unravel this mystery, the researchers developed a new analytic framework which explicitly incorporates the finite effect of each input at the critical boundary near the firing threshold. With this change, they show that not only can neurons process information far faster than previously believed, they can also perform nonlinear operations such as multiplication that are key to complex information processing.

While more accurately capturing the network aspect of neural dynamics, the new framework also reveals how cooperation between seemingly uncoordinated input signals enables neurons to perform many non-linear operations at the same time. Future work will build on these findings toward a better understanding of brain function, a fundamental requirement for treating neural diseases.

For more information, please contact:

Dr. Markus Diesmann
RIKEN Brain Science Institute
Tel: +81-(0)48-467-5971 / Fax: +81-(0)48-467-9670
Brain Science Research Planning Section
RIKEN Brain Science Institute
TELF048-467-9757@FAXF048-467-4914
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
References:
Moritz Helias, Moritz Deger, Stefan Rotter and Markus Diesmann. Instantaneous non-linear processing by pulse-coupled threshold units. PLoS Computational Biology (2010).

Hanuschkin A, Kunkel S, Helias M, Morrison A and Diesmann M (2010). A general and efficient method for incorporating precise spike times in globally time-driven simulations. Front. Neuroinform. 4:113. doi:10.3389/fninf.2010.00113

The simulation software is freely available from the NEST Initiative: http://www.nest-initiative.org

Journal information
PLoS Computational Biology

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors