Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small-space niche formation at hydrothermal vents

11.05.2017

From burning hot to ice cold, from energy-rich to an exhausted desert - environmental conditions at deep-sea hot vents change dramatically at very small scales. Nevertheless, resident bacteria know exactly what they like best. Each one has their own ecological niche.

Organisms inhabiting deep-sea hydrothermal vents face quite some challenges.


Sampling sites. By dint of ROV Quest, Meier and his colleagues sampled fluids and water as well as different surfaces at hydrothermal vents in the Manus Basin.

MARUM – Center for Marine Environmental Sciences, University of Bremen

At such vents, water heated in the Earth’s interior exits the seafloor at temperatures of more than 300 degrees Celsius. These high temperatures become possible due to enormous pressure in the deep sea, which increases the boiling point of the water. Moreover, not the smallest sparkle of sunlight reaches these depths.

Thus, the conversion of carbon dioxide into biomass through photosynthesis, as done by plants, is impossible. Other sources of energy are required. Microorganisms in the deep sea therefore use chemical compounds such as methane or sulfide, which stream from the hot vents, to grow. This way, they form the basis of the local food chain.

In this extreme habitat, the living conditions for the local fauna change drastically at very small scales. After emergence, the hot vent water mixes with the surrounding, four degrees cold seawater and rapidly cools. The same applies to the content of, for example, sulfide: Just a few centimetres from the vent opening, concentrations diminish to only a fraction of their original magnitude.

How do the resident microorganisms manage to adapt to such a small-scale environment? Are there ecological niches, as we know them from other habitats? The biologist Dimitri Meier and colleagues from the Max Planck Institute for Marine Microbiology in Bremen, together with marine researchers from MARUM in Bremen and Harvard University in Cambridge, USA, are investigating these questions in a new publication in The ISME Journal.

Who lives where is clearly regulated

On a research cruise to hydrothermal vents in the Manus Basin off Papua New Guinea, the researchers collected gas and water samples as well as samples of different surfaces in the immediate vicinity of the vents. In the laboratory in Bremen, they then examined the microorganisms living there. The examination showed that “who lives where” at the hot vents is clearly defined.

"Hydrothermal vents around the world are mainly populated by two groups of bacteria", explains Meier. "The so-called SUP05 gammaproteobacteria and epsilonproteobacteria of the genera Sulfurovum and Sulfurimonas. We found clear evidence that the widespread SUP05 bacteria are adapted to low sulfide concentrations. The epsilonproteobacteria, on the other hand, live much closer to the vent opening at much higher sulfide values."

The epsilonproteobacteria have some special skills to live in this infernal high-energy habitat. "Our analyses of their genes revealed that they possess enhanced surface attachment and stress resistance mechanisms", says Meier. "The SUP05 bacteria lack these capabilities and thus cannot hold themselves in turbulent and toxic mixing areas."

New insights into species formation in microorganisms

The study also sheds a new light on species formation in microorganisms. The researchers found evidence that a bacterial group can diversify into many different genera and species if it is exposed to environmental conditions varying strongly at very small scales. The SUP05 bacteria occurring in constantly cold and meagre conditions were represented by few, very closely related species. Within the epsilonproteobacteria, on the other hand, there was a very high diversity of species. This diversity, however, does not mean that the different species also take on different functions in their habitat. The genetic make-up of the various species was comparable.

Yet, one thing stood out, the researchers report: Certain key genes encoding the sulfur oxidation were as diverse as the marker genes used for species identification. "Apparently, there are a lot of different types of epsilonproteobacteria that all oxidise sulfide and bind carbon dioxide, but have specialised on very specific conditions, such as different sulfide concentrations," says Meier. "That is what we want to investigate next."

Original publication
Dimitri V. Meier, Petra Pjevac, Wolfgang Bach, Stephane Hourdez, Peter R Girguis, Charles Vidoudez, Rudolf Amann and Anke Meyerdierks (2017): Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME Journal.
doi:10.1038/ismej.2017.37
Link: https://www.nature.com/ismej/journal/vaop/ncurrent/pdf/ismej201737a.pdf


Please direct your queries to

Dr. Dimitri Meier
MPI für Marine Mikrobiologie
Telefon: +49 421 2028 942
dmeier@mpi-bremen.de

or the press office

Dr. Fanni Aspetsberger
Phone: +49 421 2028 947

Dr. Manfred Schlösser
Phone: +49 421 2028 704

E-Mail: presse@mpi-bremen.de

Weitere Informationen:

http://mpi-bremen.de

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>