Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small signaling molecule gives green light for cell division

07.05.2015

Generating offspring is the evolutionary goal of all living organisms. The multiplication of individual cells is coordinated by the cell cycle. For the discovery of how this process is regulated in eukaryotes the Noble Prize was awarded in 2001.

The team of Prof. Urs Jenal at the Biozentrum of the University of Basel has now identified the central switch for reproduction in bacteria. While cell cycle progression in eukaryotes is regulated by small proteins called cyclins, in bacteria this role is adopted by a small signaling molecule, c-di-GMP. In the current issue of «Nature» the scientists describe the molecular details of this process.


Enzymes producing the small signalling molecule c-di-GMP (yellow) control Caulobacter cell cycle.

University of Basel, Biozentrum

Though very tiny, the molecule is vital for the survival of almost all bacteria. This signaling messenger – called c-di-GMP – controls behavioral processes in bacteria. For instance, it ensures that bacteria join together to form biofilms, which can cause chronic infections in humans.

The scientists working with Prof. Urs Jenal at the Biozentrum of the University of Basel have now demonstrated that c-di-GMP also plays a decisive role in bacterial reproduction. They discovered that oscillating levels of the messenger subsequently influence the activity of key regulatory proteins, thereby controlling cell cycle progression and proliferation of bacteria.

Signaling molecule sets traffic lights at check points

How do cells multiply? When cells divide, two daughter cells arise from one mother cell. Before this, however, the cell must go through several phases from growth, to the replication of its genetic information and finally to cell division.

This process is known as the cell cycle. In their study on the model bacterium Caulobacter crescentus the infection biologists show for the first time, that the signaling messenger c-di-GMP controls the cell cycle in a similar way as a traffic light works. In the absence of c-di-GMP in the cell, the light shows red.

This indicates that the cell will have to remain in the first phase of the cell cycle. If the c-di-GMP level increases, the light switches to green and the cell enters the next phase. The scientists have investigated what exactly occurs on the molecular level.

c-di-GMP controls an enzyme with two modes of action

The role of this traffic light is played by an enzyme that works in two different ways. “When c-di-GMP is lacking, it blocks the process which leads to replication of the genetic material,” explains Jenal. “However, as soon as c-di-GMP is produced, it binds to the enzyme, thus altering its structure and mode of action. Subsequently, this blockade is lifted and the bacterial chromosomes can be copied.”

This step marks the entry into the next phase of the cell cycle. The varying spatial distribution of the signaling molecule in the dividing mother cell also plays an important role in the behavior of the progeny.

Pathogens use the same signaling network

It is the first time that the researchers have been able to establish a direct connection between the two major regulatory networks of bacterial cells, – the small messenger and important regulatory enzymes called kinases. The insights gained provide an important basis for elucidating the much more complicated c-di-GMP networks of pathogens.

The signaling molecule is involved in virulence, persistence mechanisms and antibiotic resistance of pathogens. For instance, dangerous pathogens causing cholera or pneumonia use c-di-GMP signaling to survive in their human host. As a next step, the researchers want to figure out, whether this molecule acts in these pathogens in the same way as in the model bacterium C. crescentus.

Original paper

Lori C, Ozaki S, Steiner S, Böhm R, Abel S, Dubey BN, Schirmer T, Hiller S, and Jenal U.
Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature; published online 6th May 2015.

Further informations

Prof. Urs Jenal, Biozentrum University of Basel, Tel: +41 61 267 21 35,
E-Mail: urs.jenal@unibas.ch

Weitere Informationen:

http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14473.html - Original paper

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Catalysts for climate protection
19.08.2019 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht From the tiny testes of flies, new insight into how genes arise
19.08.2019 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Stanford builds a heat shield just 10 atoms thick to protect electronic devices

19.08.2019 | Information Technology

Researchers demonstrate three-dimensional quantum hall effect for the first time

19.08.2019 | Physics and Astronomy

Catalysts for climate protection

19.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>