Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecules can starve cancer cells

11.10.2011
All cells in our body have a system that can handle cellular waste and release building blocks for recycling.

The underlying mechanism is called autophagy and literally means "self-eating". Many cancer cells have increased the activity of this system and the increased release of building blocks equip the cancer cells with a growth advantage and can render them resistant towards treatment.

"We have discovered a small molecule that can block autophagy in different cancer cells and specifically, this molecule can increase the sensitivity of breast cancer cells towards one of the most commonly used treatments for breast cancer," says Professor Anders H. Lund, at BRIC, University of Copenhagen.

The results have just been published in EMBO Journal: "microRNA-101 is a potent inhibitor of autophagy, Frankel et al."

Our own anti-cancer molecule
The molecule that the researchers have studied is called microRNA-101 and is found naturally in our cells. In cancer research, there is currently a large focus on both autophagy and microRNA molecules, which can control our genes and both mechanisms are known to play an important role for cancer development.

"We have shown that microRNA-101 can turn off specific genes and thereby inhibit autophagy in cancer cells. The fact that microRNA molecules can regulate autophagy is quite new and our results disclose a large and interesting field within cancer research" says researcher Lisa Frankel, who has been leading this research project in Anders H. Lund's laboratory.

Breast cancer treatment
MicroRNA-101 is often lost in liver cancer, prostate cancer and breast cancer. By controlling the level of microRNA-101 in cells of different cancer types, the researchers from BRIC show that microRNA-101 regulates autophagy. In addition, the researchers have shown that breast cancer cells become more sensitive towards treatment with the anti-hormone Tamoxifen, when they via microRNA-101 turn off the autophagy system.

"This result has a clear clinical relevance, as resistance against tamoxifen is a large problem in the treatment of breast cancer," says Anders H. Lund.

The next step of the researchers is to investigate whether other microRNA molecules are involved in the regulation of autophagy in cancer cells. Further, they will take a closer look at the role of microRNA-101 in normal development of our organism and in the development of cancer.

Contact:
Professor Anders H. Lund, BRIC
Phone: +45 35325657
Mobile: +45 30662303
E-mail: anders.lund@bric.ku.dk
Postdoc Lisa Frankel, BRIC
Phone: +45 35325813
E-mail: lisa.frankel@bric.ku.dk

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Cancer cachexia: Extracellular ligand helps to prevent muscle loss
25.02.2020 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht The genetic secret of night vision
25.02.2020 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>