Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecule shows promise as anti-cancer therapy

14.01.2014
Johns Hopkins scientists say a previously known but little studied chemical compound targets and shuts down a common cancer process. In studies of laboratory-grown human tumor cell lines, the drug disrupted tumor cell division and prevented growth of advanced cancer cells.

In a study described in the January 13 issue of Cancer-Cell, Marikki Laiho, M.D., Ph.D., and her colleagues say their work focused on the ability of a chemical dubbed BMH-21 to sabotage the transcription pathway RNA Polymerase pathway (POL I), shutting down the ability of mutant cancer genes to communicate with cells and replicate.

Laiho's research linked the pathway to p53 gene activity. P53 is a tumor suppressor gene, a protein that regulates cell growth, and it is the most frequently mutated suppressor gene in cancer.

Transcription pathways are the means by which certain proteins that direct cell division are put into action by cells. Uncontrolled cell division is a hallmark of cancer, and BMH-21 has demonstrated an ability to bind to the DNA of cancer cells and completely shut down this transcription pathway.

"Without this transcription machinery, cancer cells cannot function," says Marikki Laiho, M.D., Ph.D., professor of Radiation Oncology and Molecular Radiation Sciences at Johns Hopkins and senior author on the study.

Laiho said BMH-21 was identified using by screening a library of chemical compounds known to have potential for anticancer activity based on their chemical structure and capabilities. Specifically, they looked for the ability of those compounds to interfere with transcription in human tumor cells obtained through the National Cancer Institute's collection of 60 human tumor cell lines of nine different cancer types, including melanoma and colon cancer.

BMH-21 first jumped out, Laiho said, demonstrating potent action against melanoma and colon cancer cells. In fact, in these studies, the drug functioned better in upsetting these cancer cells' activities than many FDA-approved cancer drugs.

BMH-21 also appears to overcome the tendency of cancer cells to resist chemotherapeutic agents because it finds and targets proteins and shuts down the communication pathways that cells use to continue dividing.

"One of the challenges of current cancer therapies, including new targeted therapies, is a cancer cell's ability to overcome a treatment's anticancer properties. The characteristics of a cancer cell and its circuitry is very complex and results in many changes and mutations that allow the cells to continue to thrive despite cancer treatments," said Laiho.

While the findings with BMH-21 are promising, Laiho cautions much more study of the compound is needed before it would be ready for studies in patients. She and her team are continuing studies of the drug in animal models to further reveal the drug's potential against cancer and possible toxicities, and to determine dosage.

The transcription machinery the compound shuts down is common among all cancer cell types, so the researchers believe it has therapeutic potential across many tumor types.

Laiho is currently collaborating with Kimmel Cancer Center drug development experts as well as multiple myeloma blood cancer, medullary thyroid cancer, and prostate cancer experts to further explore the drug's cancer-fighting abilities. She also is collaborating with investigators at a laboratory in Helsinki, Finland, where she maintains an affiliation.

In addition to Laiho, other members of the research team include Karita Peltonen, Laureen Colis, Hester Liu, Rishi Trivedi, Michael S. Moubarek, Henna M. Moore, Bayoan Bai, Michelle Rudek, and Charles J. Bieberich.

The research was supported by the Academy of Finland, Biomedicum Helsinki Foundation, Cancer Society Finland, Finnish Cultural Foundation, Patrick C. Walsh Cancer Research Fund, the National Institutes of Health, Johns Hopkins University start-up funds, and the Analytical Pharmacology Core of the Johns Hopkins Kimmel Cancer Center.

Amy Mone | EurekAlert!
Further information:
http://www.hopkinscancer.org
http://www.hopkinsmedicine.org/radiation_oncology/
http://www.jhmi.edu

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>