Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018

The ammonia oxidizing archaea, or Thaumarchaeota, are amongst the most abundant marine microorganisms. Yet, we are still discovering which factors allow them to thrive in the ocean. A research team from the Max Planck Institute for Marine Microbiology in Bremen and the University of Vienna was now able to show that marine Thaumarchaeota have a broader metabolism than previously thought. The results are published in the journal Nature Microbiology.

The Thaumarchaeota play a key role in the marine nitrogen cycle. They gain energy for growth by converting ammonia, which is the most reduced form of inorganic nitrogen, to a more oxidized form: nitrite.


Samples for this study were taken in den Gulf of Mexico. (copyright: Max Planck Institute for Marine Microbiology/K. Kitzinger)


Single-cell images of environmental marine ammonia oxidizing archaea. Panel (a) identifies the ammonia oxidizing archaea (green) and surrounding cells (blue), panel (b) reveals their uptake of cyanate. This can be determined with NanoSIMS, a technology that provides highly detailed insights into the activity of single cells. Ammonia oxidizing archaea are marked by white outlines. Scale bar is 1 μm. (© Max Planck Institute for Marine Microbiology/K. Kitzinger)

These so-called ammonia oxidizing archaea were discovered little more than a decade ago, yet these organisms make up a large part of the marine microbial community, thriving in the oceans despite ammonium being present only at very low concentrations.

Even though the Thaumarchaeota are such a key part of the marine nitrogen cycle, little is known about the physiology of these small and enigmatic microorganisms.

In general, they are considered to be metabolically restricted, relying on ammonia as an energy source. A new study by Katharina Kitzinger and colleagues from the Max Planck Institute for Marine Microbiology in Bremen, Germany, the University of Vienna, Austria, the Georgia Institute for Technology, USA, the Carl von Ossietzky University Oldenburg, Germany, and the MARUM – Center for Marine Environmental Sciences in Bremen, Germany, now reveals that this is not quite true. Rather, the authors show that marine ammonia oxidizing archaea can also utilize organic nitrogen sources.

“We show for the first time that both environmental and cultured marine ammonia oxidizing archaea can use cyanate, a simple organic nitrogen compound, as an additional energy source“, Kitzinger explains.

Further, they show these microorganisms also use that urea, another organic nitrogen compound. These findings are important as cyanate and urea are common nitrogen and energy sources in the oceans. The Thaumarchaeota’s ability to supplement their metabolism with these compounds might be one reason for their outstanding success in the oceans.

Kitzinger is especially intrigued by how the marine ammonia oxidizing archaea are able to use cyanate. “We still aren’t sure exactly how they do it. They don't have the typical enzyme repertoire needed to use cyanate.

It will be exciting to see which enzymes allow marine ammonia oxidizing archaea to use cyanate, if these organisms have an even larger metabolic versatility than we know now, and how this versatility shapes their ecology”, says Kitzinger.

Participating institutes
Max Planck Institute for Marine Microbiology, Bremen, Germany
Department of Microbiology and Ecosystem Science, University of Vienna, Austria
School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
Marine Archaea Group, MARUM – Center for Marine Environmental Sciences, Bremen, Germany

Questions/press office:

Dr. Fanni Aspetsberger
Max Planck Institute for Marine Microbiology
Phone: +49 421 2028 947
E-Mail: presse@mpi-bremen.de

Wissenschaftliche Ansprechpartner:

Dr. Hannah K. Marchant
Max Planck Institute for Marine Microbiology
Phone: +49 421 2028 630
E-Mail: hmarchan@mpi-bremen.de

Katharina Kitzinger
Max Planck Institute for Marine Microbiology
Phone: +49 421 2028 646
E-Mail: kkitzing@mpi-bremen.de
University of Vienna
Department für Mikrobiologie und Ökosystemforschung
Email: kitzinger@microbial-ecology.net

Originalpublikation:

Katharina Kitzinger, Cory C. Padilla, Hannah K. Marchant, Philipp F. Hach, Craig W. Herbold, Abiel T. Kidane, Martin Könneke, Sten Littmann, Maria Mooshammer, Jutta Niggemann, Sandra Petrov, Andreas Richter, Frank J. Stewart, Michael Wagner, Marcel M. M. Kuypers, Laura A. Bristow: Cyanate and Urea are Substrates for Nitrification by Thaumarchaeota in the Marine Environment. Nature Microbiology.
DOI: 10.1038/s41564-018-0316-2
Link: http://dx.doi.org/10.1038/s41564-018-0316-2

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Velcro for human cells
16.01.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht More efficient solar cells imitate photosynthesis
16.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

The pace at which the world’s permafrost soils are warming

16.01.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>